50 research outputs found
Quantum image rain removal: second-order photon number fluctuation correlations in the time domain
Falling raindrops are usually considered purely negative factors for
traditional optical imaging because they generate not only rain streaks but
also rain fog, resulting in a decrease in the visual quality of images.
However, this work demonstrates that the image degradation caused by falling
raindrops can be eliminated by the raindrops themselves. The temporal
second-order correlation properties of the photon number fluctuation introduced
by falling raindrops has a remarkable attribute: the rain streak photons and
rain fog photons result in the absence of a stable second-order photon number
correlation, while this stable correlation exists for photons that do not
interact with raindrops. This fundamental difference indicates that the noise
caused by falling raindrops can be eliminated by measuring the second-order
photon number fluctuation correlation in the time domain. The simulation and
experimental results demonstrate that the rain removal effect of this method is
even better than that of deep learning methods when the integration time of
each measurement event is short. This high-efficient quantum rain removal
method can be used independently or integrated into deep learning algorithms to
provide front-end processing and high-quality materials for deep learning.Comment: 5 pages, 7 figure
Quantum defogging: temporal photon number fluctuation correlation in time-variant fog scattering medium
The conventional McCartney model simplifies fog as a scattering medium with
space-time invariance, as the time-variant nature of fog is a pure noise for
classical optical imaging. In this letter, an opposite finding to traditional
idea is reported. The time parameter is incorporated into the McCartney model
to account for photon number fluctuation introduced by time-variant fog. We
demonstrated that the randomness of ambient photons in the time domain results
in the absence of a stable correlation, while the scattering photons are the
opposite. This difference can be measured by photon number fluctuation
correlation when two conditions are met. A defogging image is reconstructed
from the target's information carried by scattering light. Thus, the noise
introduced by time-variant fog is eliminated by itself. Distinguishable images
can be obtained even when the target is indistinguishable by conventional
cameras, providing a prerequisite for subsequent high-level computer vision
tasks.Comment: 6 pages, 9 figure
Chinese Angelica Polysaccharide (CAP) Alleviates LPS-Induced Inflammation and Apoptosis by Down-Regulating COX-1 in PC12 Cells
Background/Aims: Chinese angelica polysaccharide (CAP) is the main effective ingredient of angelica sinensis and exerts anti-inflammatory and anti-apoptotic effects on many diseases. This study aimed to explore the pharmacological potential of CAP on spinal cord injury (SCI). Methods: PC12 cells were pretreated by CAP and were subjected to LPS. Transfection was performed to alter the expression of COX-1. Cell viability and apoptotic cell rate were measured by CCK-8 and flow cytometry respectively. qRT-PCR and western blot analysis were performed to assess the expression changes of pro-inflammatory cytokines, apoptosis-related factor and core kinases in PI3K/AKT pathway. Results: LPS stimulation induced significant cell damage in PC12 cells as cell viability was repressed, apoptosis was induced and the expression levels of IL-1β, IL-6, IL-8, and TNF-α were increased. CAP pretreatment protected PC12 cells against LPS-induced cell damage. Meanwhile CAP treatment reduced the expression of COX-1 even in LPS-stimulated PC12 cells. More importantly, COX-1 overexpression abolished the protective effects of CAP on LPS-injured PC12 cells. Finally, Western blot analytical results showed that CAP activated PI3K/AKT pathway also in a COX-1-dependent manner. Conclusion: CAP exerted anti-apoptotic and anti-inflammatory effects on LPS-injured PC12 cells via down-regulation of COX-1
Resident Immune Cells of the Liver in the Tumor Microenvironment
The liver is a central immunomodulator that ensures a homeostatic balance between protection and immunotolerance. A hallmark of hepatocellular carcinoma (HCC) is the deregulation of this tightly controlled immunological network. Immune response in the liver involves a complex interplay between resident innate, innate, and adaptive immune cells. The immune response in the liver is modulated by its continuous exposure to toxic molecules and microorganisms that requires a degree of immune tolerance to protect normal tissue from damage. In HCC pathogenesis, immune cells must balance a dual role that includes the elimination of malignant cells, as well as the repair of damaged liver tissue to maintain homeostasis. Immune response in the innate and adaptive immune systems extends to the cross-talk and interaction involving immune-regulating non-hematopoietic cells, myeloid immune cells, and lymphoid immune cells. In this review, we discuss the different immune responses of resident immune cells in the tumor microenvironment. Current FDA-approved targeted therapies, including immunotherapy options, have produced modest results to date for the treatment of advanced HCC. Although immunotherapy therapy to date has demonstrated its potential efficacy, immune cell pathways need to be better understood. In this review article, we summarize the roles of specific resident immune cell subsets and their cross-talk subversion in HCC pathogenesis, with a view to identifying potential new biomarkers and therapy options
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly