12 research outputs found

    A maximum rupture model for the central and southern Cascadia subduction zone—reassessing ages for coastal evidence of megathrust earthquakes and tsunamis

    Get PDF
    A new history of great earthquakes (and their tsunamis) for the central and southern Cascadia subduction zone shows more frequent (17 in the past 6700 yr) megathrust ruptures than previous coastal chronologies. The history is based on along-strike correlations of Bayesian age models derived from evaluation of 554 radiocarbon ages that date earthquake evidence at 14 coastal sites. We reconstruct a history that accounts for all dated stratigraphic evidence with the fewest possible ruptures by evaluating the sequence of age models for earthquake or tsunami contacts at each site, comparing the degree of temporal overlap of correlated site age models, considering evidence for closely spaced earthquakes at four sites, and hypothesizing only maximum-length megathrust ruptures. For the past 6700 yr, recurrence for all earthquakes is 370–420 yr. But correlations suggest that ruptures at ∼1.5 ka and ∼1.1 ka were of limited extent (<400 km). If so, post-3-ka recurrence for ruptures extending throughout central and southern Cascadia is 510–540 yr. But the range in the times between earthquakes is large: two instances may be ∼50 yr, whereas the longest are ∼550 and ∼850 yr. The closely spaced ruptures about 1.6 ka may illustrate a pattern common at subduction zones of a long gap ending with a great earthquake rupturing much of the subduction zone, shortly followed by a rupture of more limited extent. The ruptures of limited extent support the continued inclusion of magnitude-8 earthquakes, with longer ruptures near magnitude 9, in assessments of seismic hazard in the region

    High-resolution seismic profiling reveals faulting associated with the 1934 Ms 6.6 Hansel Valley earthquake (Utah, USA)

    No full text
    The 1934 Ms 6.6 Hansel Valley, Utah, earthquake produced an 8-km-long by 3-kmwide zone of north-south-trending surface deformation in an extensional basin within the easternmost Basin and Range Province. Less than 0.5 m of purely vertical displacement was measured at the surface, although seismologic data suggest mostly strike-slip faulting at depth. Characterization of the origin and kinematics of faulting in the Hansel Valley earthquake is important to understand how complex fault ruptures accommodate regions of continental extension and transtension. Here, we address three questions: (1) How does the 1934 surface rupture compare with faults in the subsurface? (2) Are the 1934 fault scarps tectonic or secondary features? (3) Did the 1934 earthquake have components of both strike-slip and dip-slip motion? To address these questions, we acquired a 6.6-km-long, high-resolution seismic profile across Hansel Valley, including the 1934 ruptures. We observed numerous eastand west-dipping normal faults that dip 40°- 70° and offset late Quaternary strata from within a few tens of meters of the surface down to a depth of ~1 km. Spatial correspondence between the 1934 surface ruptures and subsurface faults suggests that ruptures associated with the earthquake are of tectonic origin. Our data clearly show complex basin faulting that is most consistent with transtensional tectonics. Although the kinematics of the 1934 earthquake remain underconstrained, we interpret the disagreement between surface (normal) and subsurface (strike-slip) kinematics as due to slip partitioning during fault propagation and to the effect of preexisting structural complexities. We infer that the 1934 earthquake occurred along an ~3-km wide, off-fault damage zone characterized by distributed deformation along small-displacement faults that may be alternatively activated during different earthquake episodes

    Activating KRAS mutations are characteristic of oncocytic sinonasal papilloma and associated sinonasal squamous cell carcinoma

    Full text link
    Oncocytic sinonasal papillomas (OSPs) are benign tumours of the sinonasal tract, a subset of which are associated with synchronous or metachronous sinonasal squamous cell carcinoma (SNSCC). Activating EGFR mutations were recently identified in nearly 90% of inverted sinonasal papillomas (ISPs) â a related tumour with distinct morphology. EGFR mutations were, however, not found in OSP, suggesting that different molecular alterations drive the oncogenesis of these tumours. In this study, tissue from 51 cases of OSP and five cases of OSPâ associated SNSCC was obtained retrospectively from six institutions. Tissue was also obtained from 50 cases of ISP, 22 cases of ISPâ associated SNSCC, ten cases of exophytic sinonasal papilloma (ESP), and 19 cases of SNSCC with no known papilloma association. Using targeted nextâ generation and conventional Sanger sequencing, we identified KRAS mutations in 51/51 (100%) OSPs and 5/5 (100%) OSPâ associated SNSCCs. The somatic nature of KRAS mutations was confirmed in a subset of cases with matched germline DNA, and four matched pairs of OSP and concurrent associated SNSCC had concordant KRAS genotypes. In contrast, KRAS mutations were present in only one (5%) SNSCC with no known papilloma association and none of the ISPs, ISPâ associated SNSCCs, or ESPs. This is the first report of somatic KRAS mutations in OSP and OSPâ associated SNSCC. The presence of identical mutations in OSP and concurrent associated SNSCC supports the putative role of OSP as a precursor to SNSCC, and the high frequency and specificity of KRAS mutations suggest that OSP and OSPâ associated SNSCC are biologically distinct from other similar sinonasal tumours. The identification of KRAS mutations in all studied OSP cases represents an important development in our understanding of the pathogenesis of this disease and may have implications for diagnosis and therapy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133586/1/path4750.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133586/2/path4750_am.pd

    Slip and Strain Accumulation Along the Sadie Creek Fault, Olympic Peninsula, Washington

    No full text
    Upper-plate faulting in the Olympic Peninsula of Washington State results from relative motion of crustal blocks within the Cascadia forearc and earthquake cycle processes along the Cascadia subduction zone. We reconstruct fault slip rates since ∼14 ka on the Sadie Creek fault (SCF), north of the Olympic Mountains, using airborne lidar and field mapping of surficial deposits and landforms and optically stimulated luminescence and radiocarbon dating. The SCF is a ≥14 km-long northwest-striking, subvertical, dextral strike-slip fault with a subordinate dip-slip component. Laterally, offset debris flow channels cut into Late-Pleistocene and younger surfaces show dextral slip of 4.0–24.5 m and dip slip of 0.7–6.5 m. Re-evaluation of fault slip on the adjacent Lake Creek Boundary Creek fault (LCBCF) shows similar dextral (4.5–29.7 m) and dip slip (0.8–4.6 m). A deglacial age of 14 ka paired with the largest—and presumably oldest—slip measurements produce a minimum dextral slip rate of 1.3–2.3 mm/yr and dip-slip rate of 0.05–0.5 mm/yr. Similarities in geometry, kinematics, slip rate, and earthquake timing between the SCF and LCBCF suggest these faults represent one continuous geologic structure, the North Olympic fault zone. Geodetically constrained boundary element method models considering the effects of coseismic subduction zone stresses on upper plate structures produce comparable kinematics to those measured on the SCF and LCBCF, suggesting that the North Olympic fault zone acts as the main strain-accommodating structure in the northern Olympic Peninsula and may be modulated by stress transferred from subduction zone earthquakes
    corecore