17 research outputs found

    Bonding Patterns in a Strong 3c2e C−H···C Hydrogen Bond

    No full text

    Hydrogen Bonding in Monomers and Dimers of 2-Aminoethanol

    No full text

    Interactions of Ca(2+) with sphingomyelin and dihydrosphingomyelin.

    Get PDF
    The changes induced by Ca(2+) on human lens sphingolipids, sphingomyelin (SM), and dihydrosphingomyelin were investigated by infrared spectroscopy. Ca(2+)-concentration-dependent studies of the head group region revealed that, for both sphingolipids, Ca(2+) partially dehydrates some of the phosphate groups and binds to others. Ca(2+) affects the interface of each sphingolipid differently. In SM, Ca(2+) shifts the amide I' band to frequencies lower than those in dehydrated samples of SM alone. This could be attributed to the direct binding of Ca(2+) to carbonyl groups and/or strong tightening of interlipid H-bonds to levels beyond those in dehydrated samples of SM only. In contrast, Ca(2+) induces relatively minor dehydration around the amide groups of dihydrosphingomyelin and a slight enhancement of direct lipid-lipid interactions. Temperature-dependent studies reveal that 0.2 M Ca(2+) increases the transition temperature T(m) from 31.6 +/- 1.0 degrees C to 35.7 +/- 1.1 degrees C for SM and from 45.5 +/- 1.1 degrees C to 48.2 +/- 1.0 degrees C for dihydrosphingomyelin. Binding of Ca(2+) to some phosphate groups remains above T(m). The strength of the interaction is, however, weaker. This allows for the partial rehydration of these moieties. Similarly, above T(m), Ca(2+)-lipid and/or direct inter-lipid interactions are weakened and lead to the rehydration of amide groups

    Conformational characterization of ceramides by nuclear magnetic resonance spectroscopy.

    Get PDF
    Ceramide (Cer) has been identified as an active lipid second messenger in the regulation of cell growth, differentiation, and apoptosis. Its analog, dihydroceramide, without the 4 to 5 trans double bond in the sphingoid backbone lacks these biological effects. To establish the conformational features that distinguish ceramide from its analogs, nuclear magnetic resonance spectral data were acquired for diluted samples of ceramides (C2- and C18-Cer), dihydroceramide (C16-DHCer), and deoxydihydroceramide (C18-DODHCer). Our results suggest that in both C2- and C18-Cer, an H-bond network is formed in which the amide proton NH is donated to the OH groups on carbons C1 and C3 of the sphingosine backbone. Two tightly bound water molecules appear to stabilize this network by participating in flip-flop interactions with the hydroxyl groups. In DHCer, the lack of the trans double bond leads to a conformational distortion of this H-bonding motif. Without the critical double bond, the degree with which water molecules stabilize the H bonds between the two OH groups of the sphingolipid is reduced. This structural alteration might preclude the participation of DHCer in signaling-related interactions with cellular targets
    corecore