65,601 research outputs found

    Adaptive minimum symbol error rate beamforming assisted receiver for quadrature amplitude modulation systems

    No full text
    An adaptive beamforming assisted receiver is proposed for multiple antenna aided multiuser systems that employ bandwidth efficient quadrature amplitude modulation (QAM). A novel minimum symbol error rate (MSER) design is proposed for the beamforming assisted receiver, where the system’s symbol error rate is directly optimized. Hence the MSER approach provides a significant symbol error ratio performance enhancement over the classic minimum mean square error design. A sample-by-sample adaptive algorithm, referred to as the least symbol error rate (LBER) technique, is derived for allowing the adaptive implementation of the system to arrive from its initial beamforming weight solution to MSER beamforming solution

    Macrosegregation in direct-chill casting of aluminium alloys

    Get PDF
    This is the post-print version of the final paper published in Progress in Materials Science. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.Semi-continuous direct-chill (DC) casting holds a prominent position in commercial aluminium alloy processing, especially in production of large sized ingots. Macrosegregation, which is the non-uniform chemical composition over the length scale of a casting, is one of the major defects that occur during this process. The fact that macrosegregation is essentially unaffected by subsequent heat treatment (hence constitutes an irreversible defect) leaves us with little choice but to control it during the casting stage. Despite over a century of research in the phenomenon of macrosegregation in castings and good understanding of underlying mechanisms, the contributions of these mechanisms in the overall macrosegregation picture; and interplay between these mechanisms and the structure formation during solidification are still unclear. This review attempts to fill this gap based on the published data and own results. The following features make this review unique: results of computer simulations are used in order to separate the effects of different macrosegregation mechanisms. The issue of grain refining is specifically discussed in relation to macrosegregation. This report is structured as follows. Macrosegregation as a phenomenon is defined in the Introduction. In “Direct-chill casting – process parameters, solidification and structure patterns” section, direct-chill casting, the role of process parameters and the evolution of structural features in the as-cast billets are described. In “Macrosegregation in direct-chill casting of aluminium alloys” section, macrosegregation mechanisms are elucidated in a historical perspective and the correlation with DC casting process parameters and structural features are made. The issue of how to control macrosegregation in direct-chill casting is also dealt with in the same section. In “Role of grain refining” section, the effect of grain refining on macrosegregation is introduced, the current understanding is described and the contentious issues are outlined. The review is finished with conclusion remarks and outline for the future research.The Netherlands Institute for Metals Researc

    Degenerate states of narrow semiconductor rings in the presence of spin orbit coupling: Role of time-reversal and large gauge transformations

    Full text link
    The electron Hamiltonian of narrow semiconductor rings with the Rashba and Dresselhaus spin orbit terms is invariant under time-reversal operation followed by a large gauge transformation. We find that all the eigenstates are doubly degenerate when integer or half-integer quantum fluxes thread the quantum ring. The wavefunctions of a degenerate pair are related to each other by the symmetry operation. These results are valid even in the presence of a disorder potential. When the Zeeman term is present only some of these degenerate levels anticross

    The Kinematics of CIV in Star-Forming Galaxies at z~1.2

    Full text link
    We present the first statistical sample of rest-frame far-UV spectra of star-forming galaxies at z~1. These spectra are unique in that they cover the high-ionization CIV{\lambda}{\lambda}1548, 1550 doublet. We also detect low-ionization features such as SiII{\lambda}1527, FeII{\lambda}1608, AlII{\lambda}1670, NiII{\lambda}{\lambda}1741, 1751 and SiII{\lambda}1808, and intermediate-ionization features from AlIII{\lambda}{\lambda}1854, 1862. Comparing the properties of absorption lines of lower- and higher- ionization states provides a window into the multi-phase nature of circumgalactic gas. Our sample is drawn from the DEEP2 survey and spans the redshift range 1.01 < z < 1.35 ( = 1.25). By isolating the interstellar CIV absorption from the stellar P-Cygni wind profile we find that 69% of the CIV profiles are blueshifted with respect to the systemic velocity. Furthermore, CIV shows a small but significant blueshift relative to FeII (offset of the best-fit linear regression -76 ±\pm 26 km/s). At the same time, the CIV blueshift is on average comparable to that of MgII{\lambda}{\lambda}2796, 2803. At this point, in explaining the larger blueshift of CIV absorption at the ~ 3-sigma level, we cannot distinguish between the faster motion of highly-ionized gas relative to gas traced by FeII, and filling in on the red side from resonant CIV emission. We investigate how far-UV interstellar absorption kinematics correlate with other galaxy properties using stacked spectra. These stacking results show a direct link between CIV absorption and the current SFR, though we only observe small velocity differences among different ionization states tracing the outflowing ISM.Comment: 21 pages, 14 figures, ApJ, accepte

    Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates

    Get PDF
    A method for fabricating planar implantable microelectrode arrays was demonstrated using a process that relied on ultra-thin silicon substrates, which ranged in thickness from 25 to 50 µm. The challenge of handling these fragile materials was met via a temporary substrate support mechanism. In order to compensate for putative electrical shielding of extracellular neuronal fields, separately addressable electrode arrays were defined on each side of the silicon device. Deep reactive ion etching was employed to create sharp implantable shafts with lengths of up to 5 mm. The devices were flip-chip bonded onto printed circuit boards (PCBs) by means of an anisotropic conductive adhesive film. This scalable assembly technique enabled three-dimensional (3D) integration through formation of stacks of multiple silicon and PCB layers. Simulations and measurements of microelectrode noise appear to suggest that low impedance surfaces, which could be formed by electrodeposition of gold or other materials, are required to ensure an optimal signal-to-noise ratio as well a low level of interchannel crosstalk
    corecore