31 research outputs found

    Research Center for Ethnomedicine, Division of International Cooperative Research

    Get PDF

    Research Center for Ethnomedicine, Division of International Cooperative Research

    Get PDF

    Catalytic Conversion of 5-Hydroxymethylfurfural and Fructose to 5-Ethoxymethylfurfural over Sulfonated Biochar Catalysts

    Get PDF
    5-Hydroxymethylfurfural (HMF) is a key platform compound that can be produced by the dehydration of typical carbohydrates like glucose and fructose. Among the derivatives of HMF, 5-ethoxymethylfurfural (EMF) is the etherification product of HMF with ethanol. Owing to some advantages (i.e., high energy density), EMF has been regarded as a potential liquid fuel. Therefore, catalytic conversion of   HMF and fructose to EMF is of significance, especially using heterogeneous catalysts. In this paper, we demonstrated the preparation of biomass-based catalysts for the synthesis of EMF from HMF and fructose. Some sulfonated biochar catalysts were prepared by the carbonization of biomass-based precursors at high temperature in N2, followed by the subsequent sulfonation process employing concentered H2SO4 as sulfonation reagent. The obtained catalysts were characterized by scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), and element analysis. The catalytic conversion of HMF to EMF was carried out in ethanol, providing a 78% yield with complete conversion at 120 °C. The catalytic activity of the used catalyst showed slight decrease for the etherification of HMF. Moreover, the catalysts were effective for the direct conversion of fructose towards EMF in 64.9% yield. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)

    Aberrantly hydroxymethylated differentially expressed genes and the associated protein pathways in osteoarthritis

    Get PDF
    Background The elderly population is at risk of osteoarthritis (OA), a common, multifactorial, degenerative joint disease. Environmental, genetic, and epigenetic (such as DNA hydroxymethylation) factors may be involved in the etiology, development, and pathogenesis of OA. Here, comprehensive bioinformatic analyses were used to identify aberrantly hydroxymethylated differentially expressed genes and pathways in osteoarthritis to determine the underlying molecular mechanisms of osteoarthritis and susceptibility-related genes for osteoarthritis inheritance. Methods Gene expression microarray data, mRNA expression profile data, and a whole genome 5hmC dataset were obtained from the Gene Expression Omnibus repository. Differentially expressed genes with abnormal hydroxymethylation were identified by MATCH function. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the genes differentially expressed in OA were performed using Metascape and the KOBAS online tool, respectively. The protein–protein interaction network was built using STRING and visualized in Cytoscape, and the modular analysis of the network was performed using the Molecular Complex Detection app. Results In total, 104 hyperhydroxymethylated highly expressed genes and 14 hypohydroxymethylated genes with low expression were identified. Gene ontology analyses indicated that the biological functions of hyperhydroxymethylated highly expressed genes included skeletal system development, ossification, and bone development; KEGG pathway analysis showed enrichment in protein digestion and absorption, extracellular matrix–receptor interaction, and focal adhesion. The top 10 hub genes in the protein–protein interaction network were COL1A1, COL1A2, COL2A1, COL3A1, COL5A1, COL5A2, COL6A1, COL8A1, COL11A1, and COL24A1. All the aforementioned results are consistent with changes observed in OA. Conclusion After comprehensive bioinformatics analysis, we found aberrantly hydroxymethylated differentially expressed genes and pathways in OA. The top 10 hub genes may be useful hydroxymethylation analysis biomarkers to provide more accurate OA diagnoses and target genes for treatment of OA

    民族薬物研究センター国際共同研究分野

    No full text

    Looking Deeper into the Factors Regulating Global Innovation with PCA and Rough Sets

    No full text
    A country’s economic and industrial progress is strongly governed by the level of its innovation. However, the conditions that influence and encourage stronger innovation trends are difficult to determine, and this is due in part to the lack of a clear consensus among diverse indicators of an economy’s innovative capacity as well as to the complex relations between such factors. This study independently analyzes a few representative indicators of innovation for various input variables considered to enable innovation and ranks and selects them based on two different analysis paradigms. One draws an overall picture of relationships and interactions between different variables and describes the position of significant countries, and the other selects a set of relevant features to extract rules typifying this multifaceted interaction. A good consensus is observed for these two analysis paradigms

    民族薬物研究センター国際共同研究分野

    No full text

    Biomass Carbon Materials Contribute Better Alkali-Metal–Selenium Batteries: A Mini-Review

    No full text
    Owing to the sustainability, environmental friendliness, and structural diversity of biomass-derived materials, extensive efforts have been devoted to using them in high-energy rechargeable batteries. Alkali-metal–selenium batteries, one of the high-energy rechargeable batteries with a reasonable cost compared to up-to-date lithium-ion batteries, have also attracted significant attention. Therefore, a timely and comprehensive review of the biomass carbon structures/components to the mechanisms for enhancing alkali-metal–selenium batteries has been systematically introduced. In the end, advantages, challenges, and outlooks are pointed out for the future development of biomass-derived carbon materials in alkali-metal–selenium batteries. This review could help researchers think about using biomass carbon materials to improve battery performance and what other problems should be solved, thereby promoting the application of biomass materials in battery design
    corecore