39,339 research outputs found
An external economic policy for South Africa
In a world of rapidly changing economic and political conditions, it is necessary to review the external economic policy of a country from time to time. On the one hand, we in South Africa should take note of the economic and political development taking place at such a rapid pace in Africa, and on the other hand, we should also pay attention to the modern tendency to form international trade blocs. The present state of affairs not only calls for protection and development of our international economic interests, but also for thorough planning of our future economic growth and development
The Odyssey Approach for Optimizing Federated SPARQL Queries
Answering queries over a federation of SPARQL endpoints requires combining
data from more than one data source. Optimizing queries in such scenarios is
particularly challenging not only because of (i) the large variety of possible
query execution plans that correctly answer the query but also because (ii)
there is only limited access to statistics about schema and instance data of
remote sources. To overcome these challenges, most federated query engines rely
on heuristics to reduce the space of possible query execution plans or on
dynamic programming strategies to produce optimal plans. Nevertheless, these
plans may still exhibit a high number of intermediate results or high execution
times because of heuristics and inaccurate cost estimations. In this paper, we
present Odyssey, an approach that uses statistics that allow for a more
accurate cost estimation for federated queries and therefore enables Odyssey to
produce better query execution plans. Our experimental results show that
Odyssey produces query execution plans that are better in terms of data
transfer and execution time than state-of-the-art optimizers. Our experiments
using the FedBench benchmark show execution time gains of at least 25 times on
average.Comment: 16 pages, 10 figure
Detection of OD towards the low-mass protostar IRAS16293-2422
Although water is an essential and widespread molecule in star-forming
regions, its chemical formation pathways are still not very well constrained.
Observing the level of deuterium fractionation of OH, a radical involved in the
water chemical network, is a promising way to infer its chemical origin. We aim
at understanding the formation mechanisms of water by investigating the origin
of its deuterium fractionation. This can be achieved by observing the abundance
of OD towards the low-mass protostar IRAS16293-2422, where the HDO distribution
is already known. Using the GREAT receiver on board SOFIA, we observed the
ground-state OD transition at 1391.5 GHz towards the low-mass protostar
IRAS16293-2422. We also present the detection of the HDO 111-000 line using the
APEX telescope. We compare the OD/HDO abundance ratio inferred from these
observations with the predictions of chemical models. The OD line is detected
in absorption towards the source continuum. This is the first detection of OD
outside the solar system. The SOFIA observation, coupled to the observation of
the HDO 111-000 line, provides an estimate of the abundance ratio OD/HDO ~
17-90 in the gas where the absorption takes place. This value is fairly high
compared with model predictions. This may be reconciled if reprocessing in the
gas by means of the dissociative recombination of H2DO+ further fractionates OH
with respect to water. The present observation demonstrates the capability of
the SOFIA/GREAT instrument to detect the ground transition of OD towards
star-forming regions in a frequency range that was not accessible before.
Dissociative recombination of H2DO+ may play an important role in setting a
high OD abundance. Measuring the branching ratios of this reaction in the
laboratory will be of great value for chemical models.Comment: 6 pages, 6 figures, 3 tables, accepted for publication in A&A
SOFIA/GREAT special issu
Analysis of the citation of Web-based information resources by UNISA academic researchers.
The Web is a powerful, dynamic and flexible information resource interface that fundamentally alters the academic’s research practices and interaction with information due to the additional avenues available to retrieve research and scholarly information. There is a surge in global knowledge production and a massive expansion in scholarly research output. The growth in the availability of fee- and free-based Web information resources, and the ease of access, has led to a phenomenal increase in the use of these information resources. Today’s researcher has virtually unlimited access to a greater number and variety of information resources than ever before (Noam 1997)
Geometric picture of quantum discord for two-qubit quantum states
Among various definitions of quantum correlations, quantum discord has
attracted considerable attention. To find analytical expression of quantum
discord is an intractable task. Exact results are known only for very special
states, namely, two-qubit X-shaped states. We present in this paper a geometric
viewpoint, from which two-qubit quantum discord can be described clearly. The
known results about X state discord are restated in the directly perceivable
geometric language. As a consequence, the dynamics of classical correlations
and quantum discord for an X state in the presence of decoherence is endowed
with geometric interpretation. More importantly, we extend the geometric method
to the case of more general states, for which numerical as well as analytica
results about quantum discord have not been found yet. Based on the support of
numerical computations, some conjectures are proposed to help us establish
geometric picture. We find that the geometric picture for these states has
intimate relationship with that for X states. Thereby in some cases analytical
expressions of classical correlations and quantum discord can be obtained.Comment: 9 figure
Nodeless superconductivity in the noncentrosymmetric MoRhN superconductor: a SR study
The noncentrosymmetric superconductor MoRhN, with K,
adopts a -Mn-type structure (space group 432), similar to that of
MoAlC. Its bulk superconductivity was characterized by magnetization
and heat-capacity measurements, while its microscopic electronic properties
were investigated by means of muon-spin rotation and relaxation (SR). The
low-temperature superfluid density, measured via transverse-field (TF)-SR,
evidences a fully-gapped superconducting state with , very close to 1.76 - the BCS gap value for
the weak coupling case, and a magnetic penetration depth nm.
The absence of spontaneous magnetic fields below the onset of
superconductivity, as determined by zero-field (ZF)-SR measurements, hints
at a preserved time-reversal symmetry in the superconducting state. Both TF-and
ZF-SR results evidence a spin-singlet pairing in MoRhN.Comment: 5 figures and 5 pages. Accepted for publication as a Rapid
Communication in Phys. Rev.
- …