34,126 research outputs found

    FE modelling of bond interaction of FRP bars to concrete

    Get PDF
    In this paper a computational modelling approach is used to investigate the bond behaviour of fibre-reinforced plastic (FRP) bars in concrete. Two finite element packages (ANSYS and ABAQUS) are used to model the bond interaction of FRP reinforcing bars in cubes and beams. The main purpose of this work is to develop additional understanding of how FRP bars ā€˜cooperateā€™ with concrete to sustain the pullout load. Two modelling approaches are presented. In the first approach, a spring describing the behaviour of short embedment lengths in pullout tests was used for predicting the behaviour of longer embedment lengths. In the second approach, spring characteristics obtained from an experimentally determined bond stress against anchorage length envelope are used in FE modelling of beams. Both approaches showed good agreement between analytical and experimental results. However, further development on the analytical modelling of the bond interaction is required, in order to consider the effect of all parameters that influence bond

    General covariant geometric momentum, gauge potential and a Dirac fermion on a two-dimensional sphere

    Full text link
    For a particle that is constrained on an (Nāˆ’1N-1)-dimensional (Nā‰„2N\geq2) curved surface, the Cartesian components of its momentum in NN-dimensional flat space is believed to offer a proper form of momentum for the particle on the surface, which is called the geometric momentum as it depends on the mean curvature. Once the momentum is made general covariance, the spin connection part can be interpreted as a gauge potential. The present study consists in two parts, the first is a discussion of the general framework for the general covariant geometric momentum. The second is devoted to a study of a Dirac fermion on a two-dimensional sphere and we show that there is the generalized total angular momentum whose three cartesian components form the su(2)su(2) algebra, obtained before by consideration of dynamics of the particle, and we demonstrate that there is no curvature-induced geometric potential for the fermion.Comment: 8 pages, no figure. Presentation improve

    Numerical simulation of two-phase cross flow in the gas diffusion layer microstructure of proton exchange membrane fuel cells

    Get PDF
    The cross flow in the under-land gas diffusion layer (GDL) between 2 adjacent channels plays an important role on water transport in proton exchange membrane fuel cell. A 3-dimensional (3D) two-phase model that is based on volume of fluid is developed to study the liquid water-air cross flow within the GDL between 2 adjacent channels. By considering the detailed GDL microstructures, various types of air-water cross flows are investigated by 3D numerical simulation. Liquid water at 4 locations is studied, including droplets at the GDL surface and liquid at the GDL-catalyst layer interface. It is found that the water droplet at the higher-pressure channel corner is easier to be removed by cross flow compared with droplets at other locations. Large pressure difference Ī”p facilitates the faster water removal from the higher-pressure channel. The contact angle of the GDL fiber is the key parameter that determines the cross flow of the droplet in the higher-pressure channel. It is observed that the droplet in the higher-pressure channel is difficult to flow through the hydrophobic GDL. Numerical simulations are also performed to investigate the water emerging process from different pores of the GDL bottom. It is found that the amount of liquid water removed by cross flow mainly depends on the pore's location, and the water under the land is removed entirely into the lower-pressure channel by cross flow

    Cloning and expression of porcine Ī²1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen

    Get PDF
    Xenograft rejection of pigs organs with an engineered mutation in the GGTA-1 gene (GTKO) remains a predominantly antibody mediated process which is directed to a variety of non-Gal protein and carbohydrate antigens. We previously used an expression library screening strategy to identify six porcine endothelial cell cDNAs which encode pig antigens that bind to IgG induced after pig-to-primate cardiac xenotransplantation. One of these gene products was a glycosyltransferase with homology to the bovine Ī²1,4 N-acetylgalactosaminyltransferase (B4GALNT2). We now characterize the porcine B4GALNT2 gene sequence, genomic organization, expression, and functional significance

    Robust Hāˆž feedback control for uncertain stochastic delayed genetic regulatory networks with additive and multiplicative noise

    Get PDF
    The official published version can found at the link below.Noises are ubiquitous in genetic regulatory networks (GRNs). Gene regulation is inherently a stochastic process because of intrinsic and extrinsic noises that cause kinetic parameter variations and basal rate disturbance. Time delays are usually inevitable due to different biochemical reactions in such GRNs. In this paper, a delayed stochastic model with additive and multiplicative noises is utilized to describe stochastic GRNs. A feedback gene controller design scheme is proposed to guarantee that the GRN is mean-square asymptotically stable with noise attenuation, where the structure of the controllers can be specified according to engineering requirements. By applying control theory and mathematical tools, the analytical solution to the control design problem is given, which helps to provide some insight into synthetic biology and systems biology. The control scheme is employed in a three-gene network to illustrate the applicability and usefulness of the design.This work was funded by Royal Society of the U.K.; Foundation for the Author of National Excellent Doctoral Dissertation of China. Grant Number: 2007E4; Heilongjiang Outstanding Youth Science Fund of China. Grant Number: JC200809; Fok Ying Tung Education Foundation. Grant Number: 111064; International Science and Technology Cooperation Project of China. Grant Number: 2009DFA32050; University of Science and Technology of China Graduate Innovative Foundation

    Identification of nonlinear lateral flow immunoassay state-space models via particle filter approach

    Get PDF
    This is the post-print of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the particle filtering approach is used, together with the kernel smoothing method, to identify the state-space model for the lateral flow immunoassay through available but short time-series measurement. The lateral flow immunoassay model is viewed as a nonlinear dynamic stochastic model consisting of the equations for the biochemical reaction system as well as the measurement output. The renowned extended Kalman filter is chosen as the importance density of the particle filter for the purpose of modeling the nonlinear lateral flow immunoassay. By using the developed particle filter, both the states and parameters of the nonlinear state-space model can be identified simultaneously. The identified model is of fundamental significance for the development of lateral flow immunoassay quantification. It is shown that the proposed particle filtering approach works well for modeling the lateral flow immunoassay.This work was supported in part by the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, Natural Science Foundation of China under Grants 61104041, International Science and Technology Cooperation Project of Fujian Province of China under Grant 2009I0016
    • ā€¦
    corecore