17 research outputs found

    Multi-level structured self-attentions for distantly supervised relation extraction

    Get PDF
    Attention mechanisms are often used in deep neural networks for distantly supervised relation extraction (DS-RE) to distinguish valid from noisy instances. However, traditional 1- D vector attention models are insufficient for the learning of different contexts in the selection of valid instances to predict the relationship for an entity pair. To alleviate this issue, we propose a novel multi-level structured (2-D matrix) self-attention mechanism for DS-RE in a multi-instance learning (MIL) framework using bidirectional recurrent neural networks. In the proposed method, a structured word-level self-attention mechanism learns a 2-D matrix where each row vector represents a weight distribution for different aspects of an instance regarding two entities. Targeting the MIL issue, the structured sentence-level attention learns a 2-D matrix where each row vector represents a weight distribution on selection of different valid instances. Experiments conducted on two publicly available DS-RE datasets show that the proposed framework with a multi-level structured self-attention mechanism significantly outperform state-of-the-art baselines in terms of PR curves, P@N and F1 measures

    NextGen AML: distributed deep learning based language technologies to augment anti money laundering Investigation

    Get PDF
    Most of the current anti money laundering (AML) systems, using handcrafted rules, are heavily reliant on existing structured databases, which are not capable of effectively and efficiently identifying hidden and complex ML activities, especially those with dynamic and timevarying characteristics, resulting in a high percentage of false positives. Therefore, analysts1 are engaged for further investigation which significantly increases human capital cost and processing time. To alleviate these issues, this paper presents a novel framework for the next generation AML by applying and visualizing deep learning-driven natural language processing (NLP) technologies in a distributed and scalable manner to augment AML monitoring and investigation. The proposed distributed framework performs news and tweet sentiment analysis, entity recognition, relation extraction, entity linking and link analysis on different data sources (e.g. news articles and tweets) to provide additional evidence to human investigators for final decisionmaking. Each NLP module is evaluated on a task-specific data set, and the overall experiments are performed on synthetic and real-world datasets. Feedback from AML practitioners suggests that our system can reduce approximately 30% time and cost compared to their previous manual approaches of AML investigation

    NextGen AML: distributed deep learning based language technologies to augment anti money laundering Investigation

    No full text
    Most of the current anti money laundering (AML) systems, using handcrafted rules, are heavily reliant on existing structured databases, which are not capable of effectively and efficiently identifying hidden and complex ML activities, especially those with dynamic and timevarying characteristics, resulting in a high percentage of false positives. Therefore, analysts1 are engaged for further investigation which significantly increases human capital cost and processing time. To alleviate these issues, this paper presents a novel framework for the next generation AML by applying and visualizing deep learning-driven natural language processing (NLP) technologies in a distributed and scalable manner to augment AML monitoring and investigation. The proposed distributed framework performs news and tweet sentiment analysis, entity recognition, relation extraction, entity linking and link analysis on different data sources (e.g. news articles and tweets) to provide additional evidence to human investigators for final decisionmaking. Each NLP module is evaluated on a task-specific data set, and the overall experiments are performed on synthetic and real-world datasets. Feedback from AML practitioners suggests that our system can reduce approximately 30% time and cost compared to their previous manual approaches of AML investigation

    Microstructure, mechanical properties and biocompatibility of laser metal deposited Ti–23Nb coatings on a NiTi substrate

    No full text
    To simultaneously obtain superior superelasticity and biological properties, single- and multi-layer Ti–23Nb coatings were deposited on a cold-rolled NiTi substrate using laser metal deposition (LMD). The microstructure of the single-layer coating consisted of a cellular structure with a grid size of ∼300 μm in the eutectic layer, strip structures and prior β-(Ti, Nb) phases surrounded by the Ti2Ni(Nb) phase in the Ni diffusion zone. In contrast, the microstructure of the multi-layer coating consisted of α′, α′′, and prior β phases, which arise from the partition of Nb. Compared with the NiTi substrate, the Ni ion release concentration of the single-layer coating is reduced by 45% with similar nano-mechanical behavior, i.e. a nanohardness, H, of ∼4.0 GPa, a reduced Young's modulus, E r, of ∼65 GPa, an elastic strain to failure, H/E r, of ∼0.06, a yield stress, H 3/E r 2, of ∼0.016 GPa, and a superelastic strain recovery, η sr, of ∼0.3. The reduction of Ni ion concentration for multi-layer coating after 35 days is even better at up to 62%, but at the cost of a degradation in the mechanical properties. The LMD coatings have a high dislocation density, and their creep is controlled by dislocation movement

    Microstructural evolution, mechanical properties and tribological behavior of B₄C-reinforced Ti in situ composites produced by laser powder bed fusion

    No full text
    Based on the advantage of rapid net-shape fabrication, laser powder bed fusion (LPBF) is utilized to process B4C-reinforced Ti composites. The effect of volumetric energy density (VED) on the relative density, microstructural evolution, tensile properties and wear behaviors of B4C-reinforced Ti composites were systematically investigated. The LPBF-ed samples with high relative density (>99%) can be achieved, while the pores and un-melted powders can be observed in the sample owing to the low energy input (33 J/mm3). The additive particulates B4C were transformed into needle-like TiB whiskers with nano-scale while C dissolved in the Ti matrix. Fine-scale grains (<10 μm) with random crystallographic orientation can be achieved and the residual stress shows a downtrend as the VED increases. Through the analysis of the tensile and wear tests, the sample at 61 J/mm3 VED showed a good combination of strength and wear performance, with an ultimate tensile strength of 951 MPa and a wear rate of 3.91 × 10-4 mm3·N-1m-1. The microstructural evolution in VED changes and the corresponding underlying strengthening mechanisms of LPBF-ed Ti + B4C composites are conducted in detail.Published versionThis research was funded by the National Natural Science Foundation of China (No. 52071346), the Natural Science Foundation of Hunan Province for Distinguished Young Scholars (No. 2023JJ10075), and Central South University Research Programme of Advanced Interdisciplinary Studies (No. 2023QYJC038)

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
    corecore