1,473 research outputs found

    Joint RNN Model for Argument Component Boundary Detection

    Full text link
    Argument Component Boundary Detection (ACBD) is an important sub-task in argumentation mining; it aims at identifying the word sequences that constitute argument components, and is usually considered as the first sub-task in the argumentation mining pipeline. Existing ACBD methods heavily depend on task-specific knowledge, and require considerable human efforts on feature-engineering. To tackle these problems, in this work, we formulate ACBD as a sequence labeling problem and propose a variety of Recurrent Neural Network (RNN) based methods, which do not use domain specific or handcrafted features beyond the relative position of the sentence in the document. In particular, we propose a novel joint RNN model that can predict whether sentences are argumentative or not, and use the predicted results to more precisely detect the argument component boundaries. We evaluate our techniques on two corpora from two different genres; results suggest that our joint RNN model obtain the state-of-the-art performance on both datasets.Comment: 6 pages, 3 figures, submitted to IEEE SMC 201

    Variance-Preserving-Based Interpolation Diffusion Models for Speech Enhancement

    Full text link
    The goal of this study is to implement diffusion models for speech enhancement (SE). The first step is to emphasize the theoretical foundation of variance-preserving (VP)-based interpolation diffusion under continuous conditions. Subsequently, we present a more concise framework that encapsulates both the VP- and variance-exploding (VE)-based interpolation diffusion methods. We demonstrate that these two methods are special cases of the proposed framework. Additionally, we provide a practical example of VP-based interpolation diffusion for the SE task. To improve performance and ease model training, we analyze the common difficulties encountered in diffusion models and suggest amenable hyper-parameters. Finally, we evaluate our model against several methods using a public benchmark to showcase the effectiveness of our approac

    Evidence for Majorana bound state in an iron-based superconductor

    Full text link
    The search for Majorana bound state (MBS) has recently emerged as one of the most active research areas in condensed matter physics, fueled by the prospect of using its non-Abelian statistics for robust quantum computation. A highly sought-after platform for MBS is two-dimensional topological superconductors, where MBS is predicted to exist as a zero-energy mode in the core of a vortex. A clear observation of MBS, however, is often hindered by the presence of additional low-lying bound states inside the vortex core. By using scanning tunneling microscope on the newly discovered superconducting Dirac surface state of iron-based superconductor FeTe1-xSex (x = 0.45, superconducting transition temperature Tc = 14.5 K), we clearly observe a sharp and non-split zero-bias peak inside a vortex core. Systematic studies of its evolution under different magnetic fields, temperatures, and tunneling barriers strongly suggest that this is the case of tunneling to a nearly pure MBS, separated from non-topological bound states which is moved away from the zero energy due to the high ratio between the superconducting gap and the Fermi energy in this material. This observation offers a new, robust platform for realizing and manipulating MBSs at a relatively high temperature.Comment: 27 pages, 11 figures, supplementary information include

    Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor

    Full text link
    Majorana zero-modes (MZMs) are spatially-localized zero-energy fractional quasiparticles with non-Abelian braiding statistics that hold a great promise for topological quantum computing. Due to its particle-antiparticle equivalence, an MZM exhibits robust resonant Andreev reflection and 2e2/h quantized conductance at low temperature. By utilizing variable-tunnel-coupled scanning tunneling spectroscopy, we study tunneling conductance of vortex bound states on FeTe0.55Se0.45 superconductors. We report observations of conductance plateaus as a function of tunnel coupling for zero-energy vortex bound states with values close to or even reaching the 2e2/h quantum conductance. In contrast, no such plateau behaviors were observed on either finite energy Caroli-de Genne-Matricon bound states or in the continuum of electronic states outside the superconducting gap. This unique behavior of the zero-mode conductance reaching a plateau strongly supports the existence of MZMs in this iron-based superconductor, which serves as a promising single-material platform for Majorana braiding at a relatively high temperature

    Atrial fibrillation episode status and incidence of coronary slow flow: A propensity score-matched analysis

    Get PDF
    BackgroundPrevious studies have shown that patients with a history of atrial fibrillation (AF) have a higher risk of developing coronary slow flow (CSF). However, whether AF episode status affects the incidence of CSF has not been confirmed. This study investigated the correlation between AF episode status and the incidence of CSF.MethodsWe enrolled patients with AF who underwent coronary angiography for symptoms of myocardial ischemia between January 1, 2017, and April 30, 2022, at our institution and classified them according to whether they had an episode of AF in the perioperative period. The outcomes were defined the occurrence of CSF overall and in each of the three coronary arteries. The analysis was repeated after adjusting the baseline information by the propensity score matching method in a 1:1 ratio.Results214 patients who met the inclusion and exclusion criteria were included in the study (AF episode group: 100 patients, AF non-episode group: 114 patients). Before matching, age, left atrial size, ejection fraction, heart rate, CSF incidence, and mean corrected thrombolysis in myocardial infarction frame counts were higher in patients with intraoperative AF episodes than in patients without episodes. To prevent the dependent variable (CSF incidence) from being confounded by confounding factors, we matched the two groups for age, left atrial size, and ejection fraction. In the logistic regression analysis, the incidence of CSF was significantly higher in the intraoperative AF episode group (P = 0.010, OR = 2.327, 95% CI: 1.226–4.416) than in the non-episode group.ConclusionIn patients with AF, AF episode status is significantly correlated with an increased overall incidence of CSF

    Assessment of usefulness of synchrotron radiation techniques to determine arsenic species in hair and rice grain samples

    Get PDF
    The arseniasis in Southwest Guizhou, China has been identified as a unique case of endemic arseniasis caused by exposure to indoor combustion of high As-content coal. Present investigation targeted the microdistribution and speciation of the element arsenic in human hair and environmental samples collected in one of the hyperendemic villages of arseniasis in the area. Analyses were performed by micro-beam X-ray fluorescence (μ-XRF) and X-ray absorption fine structure (XAFS). The total As level in hair samples of diagnosed patients was detected at almost the same level as in their asymptomatic neighbors. Concentrations in the lateral cut of hair samples were high-low-high (from surface to center). XAFS revealed the coexistence of both the As+3 and As+5 states in hair samples. However, the samples from patients displayed a tendency of higher As+3 / As+5 ratio than the asymptomatic fellow villagers. The μ-XRF mapping of rice grains shows that arsenic penetrates the endosperm, the major edible part of the grain, when rice grains were stored over the open fire of high As-content coal. Synchrotron radiation techniques are suitable to determine arsenic species concentrations in different parts of hair and rice grain samples. As arsenic penetrates the endosperm, rinsing the rice grains with water will remain largely ineffective
    • …
    corecore