11 research outputs found

    Volcanotectonic interactions between inclined sheets, dykes, and faults at the Santorini Volcano, Greece

    Get PDF
    Dykes and inclined sheets are known occasionally to exploit faults as parts of their paths, but the conditions that allow this to happen are still not fully understood. In this paper, we report field observations from a swarm composed of 91 segments of dykes and inclined sheets, the swarm being particularly well-exposed in the mechanically layered caldera walls of the Santorini volcano, Greece. Here the focus is on dykes and sheets in the swarm that are seen deflected into faults and the mechanical conditions that encourage such deflections. In particular, we present new analytical and numerical models to explain the mechanical principles of dyke/sheet deflections into faults. The numerical models are applied to a normal-fault dipping 65° with a damage zone composed of parallel layers or zones of progressively stiffer rocks with increasing distance from the fault rupture plane. We model a sheet-intrusion, dipping from 0° to 90° and with an overpressure of alternatively 1 MPa and 5 MPa, approaching the fault. We further tested the effects of changing (1) the thickness of the sheet-intrusion, (2) the fault-zone thickness, (3) the fault-zone dip-dimension (height), and (4) the loading by, alternatively, regional tension and compression. We find that the stiffness of the fault core, where a compliant core characterises recently active fault zones, has pronounced effects on the orientation and magnitudes of the local stresses and, thereby, on the likelihood of dyke/sheet deflection into the fault zone. Similarly, the analytical models, focusing on the fault-zone tensile strength and energy conditions for dyke/sheet deflection, indicate that dykes/sheets are most likely to be deflected into and use steeply dipping recently active (zero tensile-strength) normal faults as parts of their paths

    Forecasting magma-chamber rupture at Santorini volcano, Greece

    Get PDF
    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions and geodetic measurements of the 2011–2012 unrest period, that the measured 0.02% increase in volume of Santorini’s shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano

    Geosite assessment and communication: a review

    Get PDF
    This work is aimed at reviewing the current state of the art in geosite selection, assessment, and communication. We first highlight the main papers that have defined paramount concepts such as geodiversity, geoheritage, and geosites. We then delve into the theoretical principles and guidelines that have been proposed over the last twenty years by researchers who have thoroughly illustrated how to individuate and assess geosites. In doing so, we illustrate notable field examples of applications of qualitative and quantitative assessments of geosites in places such as Serbia, India, Iceland, Ecuador, Sardinia (Italy), Egypt, Tasmania (Australia), and Brazil. The third part of this work is dedicated to illustrating a list (by no means exhaustive) of works that have tried to come up with innovative tools, strategies, and solutions to promote and communicate geosites. From our work, it appears that geosites can be extremely effective as fully fledged outreach tools capable of bridging the gap between Earth science and the lay public

    Dyke-induced graben formation in a heterogeneous succession on Mt. Etna: Insights from field observations and FEM numerical models

    No full text
    The most common way of magma transfer towards the surface is through dyking. Dykes can generate stresses at their tips and the surrounding host rock, initiating surficial deformation, seismic activity, and graben formation. Although scientists can study active deformation and seismicity via volcano monitoring, the conditions under which dykes induce grabens during their emplacement in the shallow crust are still enigmatic. Here, we explore through FEM numerical modelling the conditions that could have been associated with dyke-induced graben formation during the 1928 fissure eruption on Mt. Etna (Italy). We use stratigraphic data of the shallow host rock successions along the western and eastern sections of the fissure that became the basis for several suites of numerical models and sensitivity tests. The layers had dissimilar mechanical properties, which allowed us to investigate the studied processes more realistically. We investigated the boundary conditions using a dyke overpressure range of 1–10 MPa and a local extensional stress field of 0.5–2 MPa. We studied the effect of field-related geometrical parameters by employing a layer thickness range of 0.1–55 m and a variable layer sequence at the existing stratigraphy. We also tested how more compliant pyroclastics, such as scoria, (if present) could have affected the accumulation of stresses around the dyke. Also, we explored how inclined sheets and vertical dykes can generate grabens at the surface. We propose that the mechanical heterogeneity of the flank succession and the local extensional stress field can largely control both the dyke path and dyke-induced graben formation regardless of the tested dyke overpressure values. Similarly, soft materials in the stratigraphy can greatly suppress the shear stresses in the vicinity of a propagating dyke, encouraging narrow grabens at the surface if only the fracturing condition is satisfied, while inclined sheets tend to form semigrabens, respectively. Finally, we provide some insights related to the structural evolution of the 1928 lateral dyking event. All the latter can be theoretically applied in similar case studies worldwide

    Virtual geosite communication through a webgis platform: A case study from santorini island (Greece)

    No full text
    We document and show a state-of-the-art methodology that could allow geoheritage sites (geosites) to become accessible to scientific and non-scientific audiences through immersive and non-immersive virtual reality applications. This is achieved through a dedicated WebGIS platform, particularly handy in communicating geoscience during the COVID-19 era. For this application, we selected nine volcanic outcrops in Santorini, Greece. The latter are mainly associated with several geological processes (e.g., dyking, explosive, and effusive eruptions). In particular, they have been associated with the famous Late Bronze Age (LBA) eruption, which made them ideal for geoher-itage popularization objectives since they combine scientific and educational purposes with ge-otourism applications. Initially, we transformed these stunning volcanological outcrops into geo-spatial models—the so called virtual outcrops (VOs) here defined as virtual geosites (VGs)—through UAV-based photogrammetry and 3D modeling. In the next step, we uploaded them on an online platform that is fully accessible for Earth science teaching and communication. The nine VGs are currently accessible on a PC, a smartphone, or a tablet. Each one includes a detailed description and plenty of annotations available for the viewers during 3D exploration. We hope this work will be regarded as a forward model application for Earth sciences' popularization and make geoheritage open to the scientific community and the lay public. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Virtual geosite communication through a webgis platform: A case study from santorini island (Greece)

    No full text
    We document and show a state-of-the-art methodology that could allow geoheritage sites (geosites) to become accessible to scientific and non-scientific audiences through immersive and non-immersive virtual reality applications. This is achieved through a dedicated WebGIS platform, particularly handy in communicating geoscience during the COVID-19 era. For this application, we selected nine volcanic outcrops in Santorini, Greece. The latter are mainly associated with several geological processes (e.g., dyking, explosive, and effusive eruptions). In particular, they have been associated with the famous Late Bronze Age (LBA) eruption, which made them ideal for geoher-itage popularization objectives since they combine scientific and educational purposes with ge-otourism applications. Initially, we transformed these stunning volcanological outcrops into geo-spatial models\u2014the so called virtual outcrops (VOs) here defined as virtual geosites (VGs)\u2014through UAV-based photogrammetry and 3D modeling. In the next step, we uploaded them on an online platform that is fully accessible for Earth science teaching and communication. The nine VGs are currently accessible on a PC, a smartphone, or a tablet. Each one includes a detailed description and plenty of annotations available for the viewers during 3D exploration. We hope this work will be regarded as a forward model application for Earth sciences' popularization and make geoheritage open to the scientific community and the lay public

    Feeders vs arrested dikes: A case study from the Younger Stampar eruption in Iceland

    No full text
    Understanding the mechanical conditions for dike arrest and associated surface deformation or, alternatively, dike propagation to the surface to supply magma to an eruption, is of fundamental importance for volcanology in general and for volcanic hazards in particular. Here we present the results of a study of an outcrop located in the Reykjanes Peninsula, SW Iceland, where one dike became arrested only 5 m below the surface of an active volcanic system, without inducing any brittle deformation at the surface. In the same outcrop, at a distance of 30 m, a feeder dike is exposed. Both dikes are associated with the Younger Stampar eruption (1210–1240 CE). We reconstructed a high-resolution 3D model, through drone surveys and Structure from Motion (SfM) techniques, on which we collected detailed structural data combined with field surveys. These data, integrated with petrographic and geochemical analyses, became inputs to Finite Element Method (FEM) numerical models, made using the COMSOL Multiphysics® software. Our results indicate that compression exerted by the intrusion of the feeder dike (inferred to have been emplaced first) can explain the arrest of the second dike and the absence of induced brittle deformation even if the dike tip is only 5 m below the surface. Furthermore, the contrasting mechanical properties of the layers that constitute the outcrop, with alternating stiff lavas and compliant tuffs, raise (concentrate) the compressive stresses in the lava flows ahead of the second dike, thereby encouraging its arrest. Both the dikes are basaltic, but the earlier emplaced feeder dike is crystal poor and slightly more evolved than the later emplaced arrested dike. The results throw a new light on the conditions for dike arrest and (the lack of) dike-induced brittle deformation at very shallow depths in active rift zones, with important implications for volcanic-hazard assessments

    Virtual Outcrops Building in Extreme Logistic Conditions for Data Collection, Geological Mapping, and Teaching: The Santorini's Caldera Case Study, Greece

    No full text
    In the present work, we test the application of boat-camera-based photogrammetry as a tool for Virtual Outcrops (VOs) building on geological mapping and data collection. We used a 20 MPX camera run by an operator who collected pictures almost continuously, keeping the camera parallel to the ground and opposite to the target during a boat survey. Our selected target was the northern part of Santorini's caldera wall, a structure of great geological interest. A total of 887 pictures were collected along a 5.5-km-long section along an almost vertical caldera outcrop. The survey was performed at a constant boat speed of about 4 m/s and a coastal approaching range of 35.8 to 296.5m. Using the Structure from Motion technique we: i) produced a successful and high-resolution 3D model of the studied area, ii) designed high-resolution VOs for two selected caldera sections, iii) investigated the regional geology, iv) collected qualitative and quantitative structural data along the vertical caldera cliff, and v) provided a new VO building approach in extreme logistic conditions

    Surface deformation during the 1928 fissure eruption of Mt. Etna (Italy): Insights from field data and FEM numerical modelling

    No full text
    The 1928 CE volcanic activity on eastern Etna, Italy, produced wide surface deformation and high effusion rates along fissures, with excess volumes of about 50 million m(3) of lavas. This, in conjunction with the low elevation of the main eruptive vents (1150 m a.s.l.), caused the destruction of the Mascali town. Our research focuses on a multidisciplinary study from field observations and Finite Element Method modelling through COMSOL Multi-physics (R), with the aim of reconstructing the geometry, kinematics and origin of the system of faults and fissures formed during the 1928 event. We collected quantitative measurements from 438 sites of azimuth values, opening direction and aperture amount of dry fissures, and attitude and vertical offsets of faults. From west to east, four volcanotectonic settings have been identified, related to dike propagation in the same direction: 1) a sequence of 8 eruptive vents, surrounded by a 385-m wide graben, 2) a 2.5-km long single eruptive fissure, 3) a half-graben as wide as 74 m and a symmetric, 39-m-wide graben without evidence of eruption, 4) alignment of lower vents along the pre-existing Ripe della Naca faults. Field data, along with historical aerial photos, became inputs to FEM numerical models. The latter allowed us to investigate the connection between diking and surface deformation during the 1928 event, subject to a range of overpressure values (1-20 MPa), host rock properties (1-30 GPa) and geometrical complexity (stratigraphic sequence, layer thickness). In addition, we studied the distribution of tensile and shear stresses above the dike tip and gained insights into dike-induced graben scenarios. Our multidisciplinary study reports that soft (e.g. tuff) layers can act as temporary stress barriers and control the surface deformation scenarios (dike-induced graben, single fracture or eruptive fissures) above a propagating dike by suppressing the distribution of shear stresses towards the surface
    corecore