709 research outputs found

    Concept Validation for Selective Heating and Press Hardening of Automotive Safety Components with Tailored Properties

    Get PDF
    © (2014) Trans Tech Publications, Switzerland.A new strategy termed selective heating and press hardening, for hot stamping of boron steel parts with tailored properties is proposed in this paper. Feasibility studies were carried out through a specially designed experimental programme. The main aim was to validate the strategy and demonstrate its potential for structural optimisation. In the work, a lab-scale demonstrator part was designed, and relevant manufacturing and property-assessment processes were defined. A heating technique and selective-heating rigs were designed to enable certain microstructural distributions in blanks to be obtained. A hot stamping tool set was designed for forming and quenching the parts. Demonstrator parts of full martensite phase, full initial phase, and differentially graded microstructures have been formed with high dimensional quality. Hardness testing and three point bending tests were conducted to assess the microstructure distribution and load bearing performance of the as-formed parts, respectively. The feasibility of the concept has been validated by the testing results

    Human Performance on Visually Presented Traveling Salesperson Problems with Varying Numbers of Nodes

    Get PDF
    We investigated the properties of the distribution of human solution times for Traveling Salesperson Problems (TSPs) with increasing numbers of nodes. New experimental data are presented that measure solution times for carefully chosen representative problems with 10, 20, . . . 120 nodes. We compared the solution times predicted by the convex hull procedure proposed by MacGregor and Ormerod (1996), the hierarchical approach of Graham, Joshi, and Pizlo (2000), and by five algorithms drawn from the artificial intelligence and operations research literature. The most likely polynomial model for describing the relationship between mean solution time and the size of a TSP is linear or near-linear over the range of problem sizes tested, supporting the earlier finding of Graham et al. (2000). We argue the properties of the solution time distributions place strong constraints on the development of detailed models of human performance for TSPs, and provide some evaluation of previously proposed models in light of our findings

    Vemurafenib-resistant BRAF-V600E-mutated melanoma is regressed by MEK-targeting drug trametinib, but not cobimetinib in a patient-derived orthotopic xenograft (PDOX) mouse model.

    Get PDF
    Melanoma is a recalcitrant disease. The present study used a patient-derived orthotopic xenograft (PDOX) model of melanoma to test sensitivity to three molecularly-targeted drugs and one standard chemotherapeutic. A BRAF-V600E-mutant melanoma obtained from the right chest wall of a patient was grown orthotopically in the right chest wall of nude mice to establish a PDOX model. Two weeks after implantation, 50 PDOX nude mice were divided into 5 groups: G1, control without treatment; G2, vemurafenib (VEM) (30 mg/kg); G3; temozolomide (TEM) (25 mg/kg); G4, trametinib (TRA) (0.3 mg/kg); and G5, cobimetinib (COB) (5 mg/kg). Each drug was administered orally, daily for 14 consecutive days. Tumor sizes were measured with calipers twice a week. On day 14 from initiation of treatment, TRA, an MEK inhibitor, was the only agent of the 4 tested that caused tumor regression (P < 0.001 at day 14). In contrast, another MEK inhibitor, COB, could slow but not arrest growth or cause regression of the melanoma. First-line therapy TEM could slow but not arrest tumor growth or cause regression. The patient in this study had a BRAF-V600E-mutant melanoma and would be considered to be a strong candidate for VEM as first-line therapy, since VEM targets this mutation. However, VEM was not effective. The PDOX model thus helped identify the very-high efficacy of TRA against the melanoma PDOX and is a promising drug for this patient. These results demonstrate the powerful precision of the PDOX model for cancer therapy, not achievable by genomic analysis alone

    Gender dimorphism and age of onset in malignant peripheral nerve sheath tumor preclinical models and human patients.

    Get PDF
    BackgroundGender-based differences in disease onset in murine models of malignant peripheral nerve sheath tumor (MPNST) and in patients with Neurofibromatosis type-1-(NF-1)-associated or spontaneous MPNST has not been well studied.MethodsForty-three mGFAP-Cre+;Ptenloxp/+;LSL-K-rasG12D/+ mice were observed for tumor development and evaluated for gender disparity in age of MPNST onset. Patient data from the prospectively collected UCLA sarcoma database (1974-2011, n = 113 MPNST patients) and 39 published studies on MPNST patients (n = 916) were analyzed for age of onset differences between sexes and between NF-1 and spontaneous MPNST patients.ResultsOur murine model showed gender-based differences in MPNST onset, with males developing MPNST significantly earlier than females (142 vs. 162 days, p = 0.015). In the UCLA patient population, males also developed MPNST earlier than females (median age 35 vs. 39.5 years, p = 0.048). Patients with NF-1-associated MPNST had significantly earlier age of onset compared to spontaneous MPNST (median age 33 vs. 39 years, p = 0.007). However, expanded analysis of 916 published MPNST cases revealed no significant age difference in MPNST onset between males and females. Similar to the UCLA dataset, patients with NF-1 developed MPNST at a significantly younger age than spontaneous MPNST patients (p < 0.0001, median age 28 vs. 41 years) and this disparity was maintained across North American, European, and Asian populations.ConclusionsAlthough our preclinical model and single-institution patient cohort show gender dimorphism in MPNST onset, no significant gender disparity was detected in the larger MPNST patient meta-dataset. NF-1 patients develop MPNST 13 years earlier than patients with spontaneous MPNST, with little geographical variance

    Temozolomide combined with irinotecan caused regression in an adult pleomorphic rhabdomyosarcoma patient-derived orthotopic xenograft (PDOX) nude-mouse model.

    Get PDF
    Adult pleomorphic rhabdomyosarcoma (RMS) is a rare and recalcitrant, highly-malignant mesenchymal tumor in need of improved therapeutic strategies. Our laboratory pioneered the patient-derived orthotopic xenograft (PDOX) nude mouse model with the technique of surgical orthotopic implantation (SOI). We previously described the development of a PDOX model of adult pleomorphic RMS where the tumor behaved similar to the patient donor. A high-grade pleomorphic rhabdomyosarcoma from a striated muscle was previously grown orthotopically in the right biceps-femoris muscle of nude mice to establish the PDOX model. In the present study, the PDOX models were randomized into the following treatment groups when tumor volume reached 100 mm3: G1, control without treatment; G2, cyclophosphamide (CPA) 140 mg/kg, intraperitoneal (i.p.) injection, weekly, for 3 weeks; G3, temozolomide (TEM), 25 mg/kg, per oral (p.o.), daily, for 21 days; G4, temozolomide (TEM) 25 mg/kg, p.o., daily, for 21 days combined with irinotecan (IRN), 4 mg/kg, i.p., daily for 21 days. After 3 weeks, treatment of PDOX with TEM combined with IRN was so powerful that it resulted in tumor regression and the smallest tumor volume compared to other groups. The RMS PDOX model should be of use to design the treatment program for the patient and for drug discovery and evaluation for this recalcitrant tumor type

    Tumor-targeting Salmonella typhimurium A1-R combined with temozolomide regresses malignant melanoma with a BRAF-V600E mutation in a patient-derived orthotopic xenograft (PDOX) model.

    Get PDF
    Melanoma is a recalcitrant disease in need of transformative therapuetics. The present study used a patient-derived orthotopic xenograft (PDOX) nude-mouse model of melanoma with a BRAF-V600E mutation to determine the efficacy of temozolomide (TEM) combined with tumor-targeting Salmonella typhimurium A1-R. A melanoma obtained from the right chest wall of a patient was grown orthotopically in the right chest wall of nude mice to establish a PDOX model. Two weeks after implantation, 40 PDOX nude mice were divided into 4 groups: G1, control without treatment (n = 10); G2, TEM (25 mg/kg, administrated orally daily for 14 consecutive days, n = 10); G3, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., once a week for 2 weeks, n = 10); G4, TEM combined with S. typhimurium A1-R (25 mg/kg, administrated orally daily for 14 consecutive days and 5 × 107 CFU/100 μl, i.v., once a week for 2 weeks, respectively, n = 10). Tumor sizes were measured with calipers twice a week. On day 14 from initiation of treatment, all treatments significantly inhibited tumor growth compared to untreated control (TEM: p < 0.0001; S. typhimurium A1-R: p < 0.0001; TEM combined with S. typhimurium A1-R: p < 0.0001). TEM combined with S. typhimurium A1-R was significantly more effective than either S. typhimurium A1-R (p = 0.0004) alone or TEM alone (p = 0.0017). TEM combined with S. typhimurium A1-R could regress the melanoma in the PDOX model and has important future clinical potential for melanoma patients
    • …
    corecore