45 research outputs found

    A Fire Severity Mapping System for Real-Time Fire Management Applications and Long-Term Planning: The FIRESEV project

    Get PDF
    Accurate, consistent, and timely fire severity maps are needed in all phases of fire management including planning, managing, and rehabilitating wildfires. The problem is that fire severity maps are commonly developed from satellite imagery that is difficult to use for planning wildfire responses before a fire has actually happened and can’t be used for real-time wildfire management because of the timing of the imagery delivery. Moreover, imagery is difficult to use for controlled fires such as prescribed burning. This study, called FIRESEV (FIRE SEVerity Mapping Tools) created a comprehensive set of tools and protocols to deliver, create, and evaluate fire severity maps for all phases of fire management. The first tool is a Severe Fire Potential Map (SFPM) that quantifies the potential for fires to burn with high severity, should they occur, for any 30m x 30m piece of ground across the western United States. This map was developed using empirical models that related topographic, vegetation, and fire weather variables to burn severity as mapped using the Monitoring Trends in Burn Severity (MTBS) digital products. This SFPM map is currently available on the Fire Research and Management Exchange System (FRAMES, http://www.frames.gov/firesev) web site and can be used to plan for future wildfires or for managing wildfires in real time, e.g. by including it as a layer in Wildland Fire Decision Support System or other GIS analysis. The next tool was the inclusion of a fire severity mapping algorithm in the Wildland Fire Assessment Tool (WFAT) developed by the National Interagency Fuels Technology Transfer (NIFTT) team. WFAT is used for fuel treatment planning to predict potential fire effects under prescribed fire weather conditions (http://www.frames.gov/partner-sites/niftt/tools/niftt-current-resources/). Now, fire severity can be mapped explicitly from fire effects simulation models (FOFEM, Consume) for real-time and planning wildfire applications. Next, the FIRESEV project showed how results from the WFAT simulated fire severity can be integrated with satellite imagery to improve fire severity mapping. And last, the FIRESEV project produced a suite of research studies, synthesis papers, and popular articles designed to improve the description, interpretation, and mapping of fire severity for wildland fire management: (1) a research study created a completely objective method of quantifying fire severity from fire effects to obtain nine unique classes of fire severity, (2) a research study comprehensively contrasted all current classifications of fire severity using Composite Burn Index (CBI) as measured on over 300 plots across the western United States to determine commonalities and differences, and (3) a synthesis paper was written discussing the problems involved in measuring, describing, and quantifying fire severity. This FIRESEV project yielded over 15 deliverables that we feel provides a comprehensive suite of products to create useful fire severity maps, along with current satellite imagery products, and also FIRESEV provides a thorough background on how to measure, interpret, and apply fire severity in fire management

    Method comparison studies of telomere length measurement using qPCR approaches:A critical appraisal of the literature

    Get PDF
    Use of telomere length (TL) as a biomarker for various environmental exposures and diseases has increased in recent years. Various methods have been developed to measure telomere length. Polymerase chain reaction (PCR)-based methods remain wide-spread for population-based studies due to the high-throughput capability. While several studies have evaluated the repeatability and reproducibility of different TL measurement methods, the results have been variable. We conducted a literature review of TL measurement cross-method comparison studies that included a PCR-based method published between January 1, 2002 and May 25, 2020. A total of 25 articles were found that matched the inclusion criteria. Papers were reviewed for quality of methodologic reporting of sample and DNA quality, PCR assay characteristics, sample blinding, and analytic approaches to determine final TL. Overall, methodologic reporting was low as assessed by two different reporting guidelines for qPCR-based TL measurement. There was a wide range in the reported correlation between methods (as assessed by Pearson's r) and few studies utilized the recommended intra-class correlation coefficient (ICC) for assessment of assay repeatability and methodologic comparisons. The sample size for nearly all studies was less than 100, raising concerns about statistical power. Overall, this review found that the current literature on the relation between TL measurement methods is lacking in validity and scientific rigor. In light of these findings, we present reporting guidelines for PCR-based TL measurement methods and results of analyses of the effect of assay repeatability (ICC) on statistical power of cross-sectional and longitudinal studies. Additional cross-laboratory studies with rigorous methodologic and statistical reporting, adequate sample size, and blinding are essential to accurately determine assay repeatability and replicability as well as the relation between TL measurement methods

    The mouse deafness locus (dn) is associated with an inversion on chromosome 19

    Get PDF
    Recombination data for the mouse deafness locus (dn) on chromosome 19 are consistent with the presence of an inversion for which one of the breakpoints is between D19Mit14 and D19Mit96, a distance of less than 226 kb. Fluorescence in situ hybridization studies using a bacterial artificial chromosome on interphase (G1) nuclei provide additional support for the presence of an inversion. The dn gene is probably the orthologue of the human DFNB7/DFNB11 gene on chromosome 9. Copyright (C) 1998 Elsevier Science B.V

    Assembly of a high-resolution map of the Acadian Usher syndrome region and localization of the nuclear EF-hand acidic gene

    Get PDF
    Usher syndrome type 1C (USH1C) occurs in a small population of Acadian descendants from southwestern Louisiana. Linkage and linkage disequilibrium analyses localize USH1C to chromosome 11p between markers D11S1397 and D11S1888, an interval of less than 680 kb. Here, we refine the USH1C linkage to a region less than 400 kb, between genetic markers D11S1397 and D11S1890. Using 17 genetic markers from this interval, we have isolated a contiguous set of 60 bacterial artificial chromosomes (BACs) that span the USH1C critical region. Exon trapping of BAC clones from this region resulted in the recovery of an exon of the nuclear EF-hand acidic (NEFA) gene. However, DNA sequence analysis of the NEFA cDNA from lymphocytes of affected individuals provided no evidence of mutation, making structural mutations in the NEFA protein unlikely as the cellular cause of Acadian Usher syndrome. Copyright (C) 1998 Elsevier Science B.V

    Genetic sensitivity to the caregiving context: The influence of 5httlpr and BDNF val66met on indiscriminate social behavior ☆ , ☆☆

    Get PDF
    Evidence that gene × environment interactions can reflect differential sensitivity to the environmental context, rather than risk or resilience, is increasing. To test this model, we examined the genetic contribution to indiscriminate social behavior, in the setting of a randomized controlled trial of foster care compared to institutional rearing. Children enrolled in the Bucharest Early Intervention Project (BEIP) were assessed comprehensively before the age of 30 months and subsequently randomized to either care as usual (CAUG) or high quality foster care (FCG). Indiscriminate social behavior was assessed at four time points, baseline, 30 months, 42 months and 54 months of age, using caregiver report with the Disturbances of Attachment Interview (DAI). General linear mixed-effects models were used to examine the effect of the interaction between group status and functional polymorphisms in Brain Derived Neurotrophic Factor (BDNF) and the Serotonin Transporter (5htt) on levels of indiscriminate behavior over time. Differential susceptibility, relative to levels of indiscriminate behavior, was demonstrated in children with either the s/s 5httlpr genotype or met 66 BDNF allele carriers. Specifically children with either the s/s 5httlpr genotype or met66 carriers in BDNF demonstrated the lowest levels of indiscriminate behavior in the FCG and the highest levels in the CAUG. Children with either the long allele of the 5httlpr or val/val genotype of BDNF demonstrated little difference in levels of indiscriminate behaviors over time and no group × genotype interaction. Children with both plasticity genotypes had the most signs of indiscriminate behavior at 54 months if they were randomized to the CAUG in the institution, while those with both plasticity genotypes randomized to the FCG intervention had the fewest signs at 54 months. Strikingly children with no plasticity alleles demonstrated no intervention effect on levels of indiscriminate behavior at 54 months. These findings represent the first genetic associations reported with indiscriminate social behavior, replicate previous gene × gene × environment findings with these polymorphisms, and add to the growing body of literature supporting a differential susceptibility model of gene × environment interactions in developmental psychopathology

    Fire History in the Yukon Flats National Wildlife Refuge, Alaska

    No full text
    We conducted this investigation in response to criticisms that the current Alaska Interagency Fire Management Plans are allowing too much of the landscape in interior Alaska to burn annually. To address this issue, we analyzed fire history patterns within the Yukon Flats National Wildlife Refuge, interior Alaska. We dated 40 fires on 27 landscape points within the refuge boundaries using standard dendrochorological methods. Fire return intervals based on tree ring data ranged from 37 to 166 years (mean = 90 32 years; N = 38) over the 250 year time frame covered by this study. We found no significant differences in the frequency of fire occurence over time. There was no evidence to suggest that changes in fire management policy have significantly altered the fire regime in the Yukon Flats area. However, the lack of significant differences over time may be due in part to the relatively short time period that fires were actively suppressed in Alaska. The full suppression era (1939–1984) may have been too short to significantly alter the fire regime in all areas of interior Alaska

    Comparing smoke emissions and impacts under alternative forest management regimes

    No full text
    Smoke from wildfires has become a growing public health issue around the world but especially in western North America and California. At the same time, managers and scientists recommend thinning and intentional use of wildland fires to restore forest health and reduce smoke from poorly controlled wildfires. Because of the changing climate and management paradigms, the evaluation of smoke impacts needs to shift evaluations from the scale of individual fire events to long-term fire regimes and regional impacts under different management strategies. To confront this challenge, we integrated three widely used modeling tools to analyze smoke impacts across different management scenarios within a future of changing climate. We applied this multi-stage framework to a case study analysis in the Lake Tahoe basin, in which managers proposed scenarios that involved varying levels of hand- and mechanical-thinning treatments and prescribed fires. We began by using the LANDIS-II model to project daily emissions of fine particulate matter from wildland fires under various climate and management scenarios over a century. We also modeled dispersion and health impacts based upon individual wildfire events selected to be representative of different management scenarios. For those events, we modeled smoke conveyance to downwind communities from representative future fires using the BlueSky smoke dispersion model. Lastly, we estimated human health impacts resulting from the modeled smoke using the U.S. Environmental Protection Agency's BenMAP model. Our results suggest that emissions from wildfires will substantially increase in future decades; however, increased levels of forest thinning could substantially reduce those emissions and harmful health impacts from large wildfires. We also found that increased use of prescribed burning could reduce the health impacts associated with large wildfires but would also increase the frequency of low levels of emissions. Furthermore, the modeling results suggested that individual prescribed fires could have substantial health impacts if dispersion conditions are unfavorable. Our results suggest that increased management is likely to yield important benefits given expected increases in wildfire activity associated with climate change. However, there remain many challenges to projecting the effects of alternative management regimes, especially ones that involve substantial increases in intentional burning

    PHASE 1 OF THE SMOKE AND EMISSIONS MODEL INTERCOMPARISON PROJECT (SEMIP): CREATION OF SEMIP AND EVALUATION OF CURRENT MODELS

    Get PDF
    Managers, regulators, and others often need information on the emissions from wildland fire and their expected smoke impacts. In order to create this information, combinations of models are utilized. The modeling steps follow a logical progression from fire activity through to emissions and dispersion. In general, several models and/or datasets are available for each modeling step, resulting in a large number of combinations that can be created to produce fire emissions or smoke impacts. Researchers, managers, and policy makers need information on how different model choices affect the resulting output, and guidance on what choices to make in selecting the models that best represent their management requirements. Baseline comparisons are needed between available models that highlight how they intercompare and, where possible, how their results compare with observations. As new models and methods are developed, standard protocols and comparison metrics are necessary to allow for these new systems to be understood in light of previous models and methods. The Smoke and Emissions Model Intercomparison Project (SEMIP) was designed to facilitate such comparisons. This project was designed to be the first step in a broader effort, and hence was titled Phase 1 of SEMIP. In Phase 1, SEMIP: • Examined the needs for fire emissions and smoke impact modeling; • Determined what data were available to help evaluate such models; • Identified a number of test cases that can serve as baseline comparisons between existing models and standard comparisons for new models; • Created a data warehouse and data sharing structure to help facilitate future comparisons; and • Performed a number of intercomparison analyses to examine existing models. SEMIP so far has resulted in: • Multiple peer reviewed journal articles and other documents; • Over 20 presentations; • Discussions with the EPA, JFSP, USFS F&AM, DOI, NWCG, and others on how to improve fire emissions calculations; • New fire emissions analysis tools; • Presentations and discussions with the JFSP on how to gather field observations useful to this type of analyses; and • Discussions with the JFSP on data sharing and archiving. SEMIP has also been acknowledged in recent RFAs from both the JFSP and NASA
    corecore