227 research outputs found

    Collisional Properties of Cold Spin-Polarized Metastable Neon Atoms

    Full text link
    We measure the rates of elastic and inelastic two-body collisions of cold spin-polarized neon atoms in the metastable 3P2 state for 20^Ne and 22^Ne in a magnetic trap. From particle loss, we determine the loss parameter of inelastic collisions beta=6.5(18)x10^{-12} cm^3s^{-1} for 20^Ne and beta=1.2(3)x10^{-11}cm^3{s}^{-1} for 22^Ne. These losses are caused by ionizing (i.e. Penning) collisions %to more than and occur less frequently than for unpolarized atoms. This proves the suppression of Penning ionization due to spin-polarization. From cross-dimensional relaxation measurements, we obtain elastic scattering lengths of a=-180(40) a_0 for 20^Ne and a=+150(+80/-50) a_0 for 22^Ne, where a_0=0.0529 nm.Comment: 4 pages, 3 figure

    The April 16 2016 Mw7.8 Muisne Earthquake in Ecuador – Preliminary Observations from the EEFIT Reconnaissance Mission of May 24 - June 7

    Get PDF
    On April 16 2016 an Mw7.8 earthquake with epicentre 29km south-southeast of Muisne in northern Manabí caused around 700 fatalities, injured 30,000 and destroyed several sections of the towns of Pedernales, Portoviejo, Canoa, Bahía de Caráquez and Manta, most of them important centres of tourism on the coast of Ecuador. During May 24-June 7 a team was deployed by the Earthquake Engineering Field Investigation Team (EEFIT) with the objective of surveying the damage and recording observations that would help the scientific and professional community understand the event and its consequences. The team, all co-authors of this paper, investigated structural damage patterns, surveyed 1,332 buildings, validated landslide data obtained from satellite imagery for 30 sites, and interviewed 120 families at 3 shelters. The damage observed in low- and mid-rise buildings seems to correlate well with the spectral response measured in Manta, Portoviejo, and Pedernales. Satellite-based landslide identification proved effective in an 80-90% of the cases investigated. The immediate unemployment spike, based on our limited survey, seemed to reach about 50% in the affected population

    A novel germline mutation of PTEN associated with brain tumours of multiple lineages

    Get PDF
    We have identified a novel germline mutation in the PTEN tumour suppressor gene. The mutation was identified in a patient with a glioma, and turned out to be a heterozygous germline mutation of PTEN (Arg234Gln), without loss of heterozygosity in tumour DNA. The biological consequences of this germline mutation were investigated by means of transfection studies of the mutant PTEN molecule compared to wild-type PTEN. In contrast to the wild-type molecule, the mutant PTEN protein is not capable of inducing apoptosis, induces increased cell proliferation and leads to high constitutive PKB/Akt activation, which cannot be increased anymore by stimulation with insulin. The reported patient, in addition to glioma, had suffered from benign meningioma in the past but did not show any clinical signs of Cowden disease or other hereditary diseases typically associated with PTEN germline mutations. The functional consequences of the mutation in transfection studies are consistent with high proliferative activity. Together, these findings suggest that the Arg234Gln missense mutation in PTEN has oncogenic properties and predisposes to brain tumours of multiple lineages

    Investigation of G72 (DAOA) expression in the human brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO), supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions.</p> <p>Methods</p> <p>The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth <it>in silico </it>analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability.</p> <p>Results</p> <p>Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis) human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala), spinal cord or testis. A detailed <it>in silico </it>analysis provides several lines of evidence that support the apparent low or absent expression of G72.</p> <p>Conclusion</p> <p>Our results suggest that native G72 protein is not normally present in the tissues that we analysed in this study. We also conclude that the lack of demonstrable G72 expression in relevant brain regions does not support a role for G72 in modulation of DAO activity and the pathology of schizophrenia via a DAO-mediated mechanism. <it>In silico </it>analysis suggests that G72 is not robustly expressed and that the transcript is potentially labile. Further studies are required to understand the significance of the G72/30 locus to schizophrenia.</p

    DNA vaccination for prostate cancer: key concepts and considerations

    Get PDF
    While locally confined prostate cancer is associated with a low five year mortality rate, advanced or metastatic disease remains a major challenge for healthcare professionals to treat and is usually terminal. As such, there is a need for the development of new, efficacious therapies for prostate cancer. Immunotherapy represents a promising approach where the host’s immune system is harnessed to mount an anti-tumour effect, and the licensing of the first prostate cancer specific immunotherapy in 2010 has opened the door for other immunotherapies to gain regulatory approval. Among these strategies DNA vaccines are an attractive option in terms of their ability to elicit a highly specific, potent and wide-sweeping immune response. Several DNA vaccines have been tested for prostate cancer and while they have demonstrated a good safety profile they have faced problems with low efficacy and immunogenicity compared to other immunotherapeutic approaches. This review focuses on the positive aspects of DNA vaccines for prostate cancer that have been assessed in preclinical and clinical trials thus far and examines the key considerations that must be employed to improve the efficacy and immunogenicity of these vaccines

    High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages

    Get PDF
    Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fc gamma receptor (Fc gamma R) Ila and FeyRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.Proteomic

    Sub-Nucleocapsid Nanoparticles: A Nasal Vaccine against Respiratory Syncytial Virus

    Get PDF
    Background: Bronchiolitis caused by the respiratory syncytial virus (RSV) in infants less than two years old is a growing public health concern worldwide, and there is currently no safe and effective vaccine. A major component of RSV nucleocapsid, the nucleoprotein (N), has been so far poorly explored as a potential vaccine antigen, even though it is a target of protective anti-viral T cell responses and is remarkably conserved between human RSV A and B serotypes. We recently reported a method to produce recombinant N assembling in homogenous rings composed of 10–11 N subunits enclosing a bacterial RNA. These nanoparticles were named sub-nucleocapsid ring structure (N SRS). Methodology and Principal Findings: The vaccine potential of N SRS was evaluated in a well-characterized and widely acknowledged mouse model of RSV infection. BALB/c adult mice were immunized intranasally with N SRS adjuvanted with the detoxified E. coli enterotoxin LT(R192G). Upon RSV challenge, vaccinated mice were largely protected against virus replication in the lungs, with a mild inflammatory lymphocytic and neutrophilic reaction in their airways. Mucosal immunization with N SRS elicited strong local and systemic immunity characterized by high titers of IgG1, IgG2a and IgA anti-N antibodies, antigen-specific CD8+ T cells and IFN-c-producing CD4+ T cells. Conclusions/Significance: This is the first report of using nanoparticles formed by the recombinant nucleocapsid protein as an efficient and safe intra-nasal vaccine against RSV
    corecore