84 research outputs found

    ФОРМИРОВАНИЕ ПРОЕКТИВНОГО ПОКРЫТИЯ ГАЗОННОГО ТРАВОСТОЯ ПРИ ПРИМЕНЕНИИ МИНЕРАЛЬНЫХ И КРЕМНИЙСОДЕРЖАЩИХ УДОБРЕНИЙ

    Get PDF
    Silicon containing fertilizer “Siliplant” and mineral fertilizers are established to influence ornamental traits of lawn herbage. Increased projective covering of lawn herbage – meadow grass and red fes-cue – is marked with the preparation “Siliplant” and mineral fertilizers applied, particularly with their joint application. In the first and second years of research in dry and excessively humid vegetation periods the optimal results were obtained through the joint treatment with mineral fertilizers and the preparation “Siliplant”: the projective covering increased in the year of sowing by averaged 27.5 % in meadow grass and 25 % in red fescue versus the control, in the second year the covering went up by averaged 19.7 and 8.44 %, respectively. Mineral fertilizers applied increased the projective covering in the year of sowing on average by 22.5 % in meadow grass and by 20 % in red fescue, in the second year they did by 14.7 % and 6.25 %, respectively. The treatment with the silicon-containing preparation “Siliplant” increased the projective covering in the year of sowing by averaged 15 % in meadow grass and by 7.5 % in red fescue; in the second vegetation period the averaged effect of the treatment was by 6.58 and 1.51 % higher, respectively.Установлено влияние кремнийсодержащего удобрения «Силиплант» и минеральных удобрений на декоративные качества газонного травостоя. Отмечено увеличение проективного покрытия газонных травостоев мятлика лугового и овсяницы красной при применении препарата «Силиплант» и минеральных удобрений, особенно при их совместном использовании. В  первый и второй годы исследований при засушливом и избыточно влажном вегетационном периоде оптимальные результаты получены при применении минеральных удобрений совместно с препаратом «Силиплант»: проективное покрытие увеличивалось в год посева в среднем на 27,5% у мятлика лугового и на 25% у овсяницы красной по отношению к контролю, во второй год – на 19,7 и 8,44% соответственно. Применение минеральных удобрений увеличивало проективное покрытие в год посева в среднем на 22,5% у мятлика лугового и на 20% у овсяницы красной, во второй год на 14,7 и 6,25% соответственно. Применение кремнийсодержащего препарата «Силиплант» увеличивало проективное покрытие в год посева в среднем на 15% у мятлика лугового и на 7,5% у овсяницы красной; во втором вегетационном периоде на 6,58 и на 1,51% соответственно

    The Physical Activity Messaging Framework (PAMF) and Checklist (PAMC): International consensus statement and user guide

    Get PDF
    Effective physical activity messaging plays an important role in the pathway towards changing physical activity behaviour at a population level. The Physical Activity Messaging Framework (PAMF) and Checklist (PAMC) are outputs from a recent modified Delphi study. This sought consensus from an international expert panel on how to aid the creation and evaluation of physical activity messages. In this paper, we (1) present an overview of the various concepts within the PAMF and PAMC, (2) discuss in detail how the PAMF and PAMC can be used to create physical activity messages, plan evaluation of messages, and aid understanding and categorisation of existing messages, and (3) highlight areas for future development and research. If adopted, we propose that the PAMF and PAMC could improve physical activity messaging practice by encouraging evidence-based and target population focused messages with clearly stated aims and consideration of potential working pathways. They could also enhance the physical activity messaging research base by harmonising key messaging terminologies, improving quality of reporting, and aiding collation and synthesis of the evidence

    Wound dressings for a proteolytic-rich environment

    Get PDF
    Wound dressings have experienced continuous and significant changes over the years based on the knowledge of the biochemical events associated with chronic wounds. The development goes from natural materials used to just cover and conceal the wound to interactive materials that can facilitate the healing process, addressing specific issues in non-healing wounds. These new types of dressings often relate with the proteolytic wound environment and the bacteria load to enhance the healing. Recently, the wound dressing research is focusing on the replacement of synthetic polymers by natural protein materials to delivery bioactive agents to the wounds. This article provides an overview on the novel protein-based wound dressings such as silk fibroin keratin and elastin. The improved properties of these dressings, like the release of antibiotics and growth factors, are discussed. The different types of wounds and the effective parameters of healing process will be reviewed

    Growth Mechanism of Gold Nanorods

    No full text
    Gold nanorods (Au NRs) are the archetype of a nanoantenna, enabling the directional capture, routing, and concentration of electromagnetic fields at the nanoscale. Solution-based synthesis methods afford advantages relative to top-down fabrication but are challenged by insufficient precision of structure, presence of byproducts, limited tunability of architecture, and device integration. This is due in part to an inadequate understanding of the early stages of Au NR growth. Here, using phase transfer via ligand exchange with monothiolated polystyrene, we experimentally demonstrate the complete evolution of seed-mediated Au NR growth in hexadecyltrimethylammonium bromide (CTAB) solution. Au NR size and shape progress from slender spherocylinders at short reaction times to rods with a dumbbell profile, flattened end facets, and octagonal prismatic structures at later stages. These evolve from a single mechanism and reflect the majority of reported Au NR morphologies, albeit reflecting different stages. Additionally, the fraction of nonrod impurities in a reaction is related to the initial distribution of the structure of the seed particles. Overall, the observations of early and intermediate stage growth are consistent with the formation of a surfactant bilayer on different crystal facets at different growth stages due to a fine balance between kinetic and thermodynamic factors

    Bioassembled Layered Silicate-Metal Nanoparticle Hybrids

    No full text
    Here we report on the bioenabled assembly of layered nanohybrids using peptides identified with regard to their affinity to the nanoparticle surface. A dodecamer peptide termed M1, determined from a phage peptide display library, was found to bind to the surface of a layered aluminosilicate (montmorillonite, MMT). Fusion of a metal binding domain to the M1 peptide or the M1 peptide by itself was able to direct the growth of metal nanoparticles, such as gold and cobalt-platinum, respectively, on the MMT. This method of producing hybrid nanoclay materials will have utility in catalytic, optical, biomedical, and composite materials applications

    Layer of clay platelets in a peptide matrix: Binding, encapsulation, and morphology

    No full text
    Monte Carlo simulations are performed to study the binding of peptides (M1: 1H2G3I4N5T6T7K8P9F10K11S12V) to a stack of mobile clay platelets and evaluate the morphological responses on a cubic lattice. A coarse-grained description is used to model both platelets and peptides capturing the specificity of each residue. Mobility profiles of residues and their proximity to platelets (i.e., the local structural profile) suggest that the peptide binding is anchored by 7Lys and 10Lys. Correlation between the density profiles of platelets and peptides aided by the visual analysis shows that (i) the layered morphology is maintained due to peptide binding, (ii) the interstitial spacing between platelets, that is, the gallery width decreases on increasing the peptide concentration (consistent with recent experiments), (iii) relatively smaller amplitude of oscillations in peptide density profile around the inner clay galleries suggests that the peptides are more likely to bind at the layer boundaries and exterior surface of the platelets than intercalate. The radius of gyration (Rg) of the peptide shows nonmonotonic dependence on the peptide concentration (Cp). © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 201

    Layer of Clay Platelets in a Peptide Matrix: Binding, Encapsulation, and Morphology

    No full text
    Monte Carlo simulations are performed to study the binding of peptides (M1: 1H2G3I4N5T6T7K8P9F10K11S12V) to a stack of mobile clay platelets and evaluate the morphological responses on a cubic lattice. A coarse‐grained description is used to model both platelets and peptides capturing the specificity of each residue. Mobility profiles of residues and their proximity to platelets (i.e., the local structural profile) suggest that the peptide binding is anchored by 7Lys and 10Lys. Correlation between the density profiles of platelets and peptides aided by the visual analysis shows that (i) the layered morphology is maintained due to peptide binding, (ii) the interstitial spacing between platelets, that is, the gallery width decreases on increasing the peptide concentration (consistent with recent experiments), (iii) relatively smaller amplitude of oscillations in peptide density profile around the inner clay galleries suggests that the peptides are more likely to bind at the layer boundaries and exterior surface of the platelets than intercalate. The radius of gyration (R g) of the peptide shows nonmonotonic dependence on the peptide concentration (C p). © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 201
    corecore