9,545 research outputs found

    Gaussian operator bases for correlated fermions

    Full text link
    We formulate a general multi-mode Gaussian operator basis for fermions, to enable a positive phase-space representation of correlated Fermi states. The Gaussian basis extends existing bosonic phase-space methods to Fermi systems and thus enables first-principles dynamical or equilibrium calculations in quantum many-body Fermi systems. We prove the completeness and positivity of the basis, and derive differential forms for products with one- and two-body operators. Because the basis satisfies fermionic superselection rules, the resulting phase space involves only c-numbers, without requiring anti-commuting Grassmann variables

    Quantum noise in optical fibers II: Raman jitter in soliton communications

    Full text link
    The dynamics of a soliton propagating in a single-mode optical fiber with gain, loss, and Raman coupling to thermal phonons is analyzed. Using both soliton perturbation theory and exact numerical techniques, we predict that intrinsic thermal quantum noise from the phonon reservoirs is a larger source of jitter and other perturbations than the gain-related Gordon-Haus noise, for short pulses, assuming typical fiber parameters. The size of the Raman timing jitter is evaluated for both bright and dark (topological) solitons, and is larger for bright solitons. Because Raman thermal quantum noise is a nonlinear, multiplicative noise source, these effects are stronger for the more intense pulses needed to propagate as solitons in the short-pulse regime. Thus Raman noise may place additional limitations on fiber-optical communications and networking using ultrafast (subpicosecond) pulses.Comment: 3 figure

    Diffusion quantum Monte Carlo calculation of the quasiparticle effective mass of the two-dimensional homogeneous electron gas

    Get PDF
    The quasiparticle effective mass is a key quantity in the physics of electron gases, describing the renormalization of the electron mass due to electron-electron interactions. Two-dimensional electron gases are of fundamental importance in semiconductor physics, and there have been numerous experimental and theoretical attempts to determine the quasiparticle effective mass in these systems. In this work we report quantum Monte Carlo results for the quasiparticle effective mass of a two-dimensional homogeneous electron gas. Our calculations differ from previous quantum Monte Carlo work in that much smaller statistical error bars have been achieved, allowing for an improved treatment of finite-size effects. In some cases we have also been able to use larger system sizes than previous calculations

    Quantum Monte Carlo calculation of the energy band and quasiparticle effective mass of the two-dimensional Fermi fluid

    Get PDF
    We have used the diffusion quantum Monte Carlo method to calculate the energy band of the two-dimensional homogeneous electron gas (HEG), and hence we have obtained the quasiparticle effective mass and the occupied bandwidth. We find that the effective mass in the paramagnetic HEG increases significantly when the density is lowered, whereas it decreases in the fully ferromagnetic HEG. Our calculations therefore support the conclusions of recent experimental studies [Y.-W. Tan et al., Phys. Rev. Lett. 94, 016405 (2005); M. Padmanabhan et al., Phys. Rev. Lett. 101, 026402 (2008); T. Gokmen et al., Phys. Rev. B 79, 195311 (2009)]. We compare our calculated effective masses with other theoretical results and experimental measurements in the literature

    Quantum noise in optical fibers I: stochastic equations

    Full text link
    We analyze the quantum dynamics of radiation propagating in a single mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This allows quantum Langevin equations to be calculated, which have a classical form except for additional quantum noise terms. In practical calculations, it is more useful to transform to Wigner or +PP quasi-probability operator representations. These result in stochastic equations that can be analyzed using perturbation theory or exact numerical techniques. The results have applications to fiber optics communications, networking, and sensor technology.Comment: 1 figur

    Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid

    Get PDF
    We have used the variational and diffusion quantum Monte Carlo methods to calculate the energy, pair correlation function, static structure factor, and momentum density of the ground state of the two-dimensional homogeneous electron gas. We have used highly accurate Slater-Jastrow-backflow trial wave functions and twist averaging to reduce finite-size effects where applicable. We compare our results with others in the literature and construct a local-density-approximation exchange-correlation functional for 2D systems

    Gaussian quantum Monte Carlo methods for fermions

    Get PDF
    We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application, we calculate finite-temperature properties of the two dimensional Hubbard model.Comment: 4 pages, 3 figures, Revised version has expanded discussion, simplified mathematical presentation, and application to 2D Hubbard mode

    Disagreement between correlations of quantum mechanics and stochastic electrodynamics in the damped parametric oscillator

    Get PDF
    Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are calculated for quantum mechanics and stochastic electrodynamics (SED), a semiclassical theory. The two theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system's nonlinear coupling constant and those of SED being linear in the same constant. In particular, differences between the two theories are present in at least a mesoscopic regime. They also exist when realistic damping is included. Such differences illustrate distinctions between quantum mechanics and a hidden variable theory for continuous variables.Comment: accepted by PR

    First-principles quantum dynamics in interacting Bose gases I: The positive P representation

    Full text link
    The performance of the positive P phase-space representation for exact many-body quantum dynamics is investigated. Gases of interacting bosons are considered, where the full quantum equations to simulate are of a Gross-Pitaevskii form with added Gaussian noise. This method gives tractable simulations of many-body systems because the number of variables scales linearly with the spatial lattice size. An expression for the useful simulation time is obtained, and checked in numerical simulations. The dynamics of first-, second- and third-order spatial correlations are calculated for a uniform interacting 1D Bose gas subjected to a change in scattering length. Propagation of correlations is seen. A comparison is made to other recent methods. The positive P method is particularly well suited to open systems as no conservation laws are hard-wired into the calculation. It also differs from most other recent approaches in that there is no truncation of any kind.Comment: 21 pages, 7 figures, 2 tables, IOP styl

    Exciton and biexciton energies in bilayer systems

    Get PDF
    We report calculations of the energies of excitons and biexcitons in ideal two-dimensional bilayer systems within the effective-mass approximation with isotropic electron and hole masses. The exciton energies are obtained by a simple numerical integration technique, while the biexciton energies are obtained from diffusion quantum Monte Carlo calculations. The exciton binding energy decays as the inverse of the separation of the layers, while the binding energy of the biexciton with respect to dissociation into two separate excitons decays exponentially
    • …
    corecore