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We have used the variational and diffusion quantum Monte Carlo methods to calculate the energy, pair-
correlation function, static structure factor, and momentum density of the ground state of the two-dimensional
�2D� homogeneous electron gas. We have used highly accurate Slater-Jastrow-backflow trial wave functions
and twist averaging to reduce finite-size effects where applicable. We compare our results with others in the
literature and construct a local-density-approximation exchange-correlation functional for 2D systems.
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I. INTRODUCTION

The homogeneous electron gas �HEG� plays a key role in
modern condensed-matter theory. It consists of a set of elec-
trons moving in a uniform, inert neutralizing background and
is the simplest fully interacting quantum many-body model
of condensed matter. The three-dimensional HEG models the
behavior of the conduction electrons in metals and semicon-
ductors, while the two-dimensional �2D� HEG models the
behavior of electrons confined to surfaces and thin layers.
Quantum Monte Carlo �QMC� methods1,2 have long played
an important role in establishing the ground-state properties
of the HEG. Most of the effort has gone into calculating the
ground-state energy of different phases as a function of den-
sity in order to establish the zero-temperature phase
diagram.3–5 In this article, we report QMC calculations of
some other properties of the 2D HEG of interest to
condensed-matter physicists: the pair-correlation function
�PCF�, static structure factor �SSF�, and momentum density
�MD�. We also report energy data for high-density HEGs. We
have confined our attention to the fluid phase, which is the
ground state at the densities typically encountered in experi-
ments.

The PCF, especially the contact PCF g�0�, is a key ingre-
dient in generalized-gradient-approximation exchange-
correlation functionals for density-functional theory �DFT�
calculations. The PCF has been studied several times using
QMC,3,4,6,7 but the value of g�0� at low densities has proved
controversial because electrons approach one another infre-
quently, and the QMC results disagree with values calculated
using ladder theory.8 Our QMC data, obtained using a differ-
ent trial wave function from the earlier calculations, should
help to clarify the situation. The SSF is related to the PCF by
a Fourier transform. SSF data at small k are needed to estab-
lish the long-range behavior of the PCF.

The MD of the HEG is of considerable importance in
Fermi-liquid theory. To our knowledge, the only QMC MD
data to have been published for the 2D HEG are those of
Tanatar and Ceperley,3 which used a relatively simple form
of trial wave function. �A fit to QMC data generated by
Conti9 is reported in Ref. 10, but no details about the calcu-
lations are given.� The low-density MD of Tanatar and
Ceperley3 shows a very strange feature: the MD is lower at
zero momentum than it is at the top of the Fermi edge. It is
clearly important to provide different QMC MD data in order

to establish whether this is a genuine property of the HEG.
Finally, we report ground-state energy data for paramag-

netic Fermi fluids, which we use to parametrize a local-
density-approximation exchange-correlation functional to
use in DFT studies of 2D systems.

The rest of this article is arranged as follows. In Sec. II we
describe the computational techniques used. In Sec. III we
present the data we have generated. Finally, we draw our
conclusions in Sec. IV. Densities are given in terms of the
radius rs of the circle that contains one electron on average.
We use Hartree atomic units ��= �e�=me=4��0=1� through-
out this article. All our QMC calculations were performed
using the CASINO code.11

II. QMC CALCULATIONS

A. Trial wave functions

In the variational quantum Monte Carlo �VMC� method,
expectation values are calculated with respect to an approxi-
mate trial wave function, the integrals being performed by a
Monte Carlo technique. In diffusion quantum Monte Carlo1,2

�DMC� the imaginary-time Schrödinger equation is used to
evolve an ensemble of electronic configurations toward the
ground state. The fermionic symmetry is maintained by the
fixed-node approximation12 in which the nodal surface of the
wave function is constrained to equal that of a trial wave
function. The VMC algorithm generates electron configura-
tions distributed according to the square of the trial wave
function, while the DMC algorithm generates configurations
distributed as the product of the trial wave function and its
ground-state component.

Our trial wave functions consisted of Slater determinants
of plane-wave orbitals multiplied by a Jastrow correlation
factor. The Jastrow factor contained polynomial and plane-
wave expansions in electron-electron separation.13 The orbit-
als in the Slater wave function were evaluated at quasiparti-
cle coordinates related to the actual electron positions by
backflow functions consisting of polynomial expansions in
electron-electron separation.14 The wave functions were op-
timized by variance minimization15,16 and linear-least-
squares energy minimization.17

We simulated HEGs in finite square cells subject to peri-
odic boundary conditions. The many-body Bloch theorem18

states that the wave function � satisfies
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��r1, . . . ,ri + Rs, . . . ,rN� = exp�iks · Rs���r1, . . . ,rN� ,

�1�

where Rs is a simulation-cell lattice vector and ks is the
simulation-cell Bloch vector. In some of our calculations,
and in previous QMC studies of the 2D HEG,3,4,19 it has been
assumed that ks=0. However, in our calculations of the en-
ergy, PCF, and SSF we performed twist averaging �TA� in
which expectation values are averaged over ks in the first
Brillouin zone of the simulation cell.20 This procedure
greatly reduces single-particle finite-size errors caused by
shell-filling effects.

The high quality of our trial wave functions is demon-
strated in Table I, which shows QMC energies achieved us-
ing different levels of wave function for a 58-electron para-
magnetic Fermi fluid of density parameter rs=5 a.u.
Backflow functions change the nodal surface of the trial
wave function and can therefore improve the fixed-node
DMC energy. In practice we find that backflow lowers the
DMC energy substantially. Our VMC energies are signifi-
cantly lower than those of Kwon et al.,19 as is our Slater-
Jastrow-backflow DMC energy. On the other hand, the
Slater-Jastrow-backflow DMC energy of Attaccalite et al.21

is higher than that of Kwon et al.19 Our Slater-Jastrow DMC
energy is slightly lower than that of Attaccalite et al.,21

which in turn is lower than that of Kwon et al.19 Since the

nodal surface is the same in the three calculations, these
DMC energies really ought to agree. However, the trial wave
function used by Kwon et al.19 is very much poorer than
ours, as can be seen by comparing the VMC energies. Time-
step and population-control biases in their DMC energies
must be much greater, which may explain the discrepancy.
The results of Attaccalite et al.21 have not been extrapolated
to zero time step, hindering comparison. The VMC and
DMC results of Rapisarda and Senatore4 are in very close
agreement with those of Kwon et al.19

We have optimized a three-electron term in the Jastrow
factor �together with the two-electron Jastrow terms and
backflow functions� for a paramagnetic 58-electron HEG at
rs=5 a.u. The three-electron term lowered the nontwist-
averaged VMC energy from −0.149 385 1�6� to
−0.149 511 1�5� a.u. per electron. The DMC energies at a
time step of 0.1 a.u. without and with the three-body Jastrow
factor are −0.149 742�2� and −0.149 740�2� a.u. per elec-
tron, respectively. As expected, the inclusion of the three-
body term makes an insignificant difference to the DMC en-
ergy because the DMC energy depends only on the nodal
surface of the trial wave function, which is not directly af-
fected by the Jastrow factor. We have therefore not used
three-electron terms in our production calculations.

B. Evaluating expectation values

1. Evaluating the MD

Let ��R� be the trial many-electron wave function, where
R= �r1 , . . . ,rN�. Suppose that the first N↑ electrons are spin
up and the remaining electrons are spin down. The MD of
spin-up electrons can be evaluated as

��k� = � 1

�2��3� ��r,r2, . . . ,rN�
��R�

exp�ik · �r1 − r��dr� ,

�2�

where the angled brackets denote an average over the set of
electron configurations generated in the VMC and DMC al-
gorithms �which are distributed as ���2 and ���0�, respec-
tively, where �0 is the ground-state component of ��. We
have restricted our attention to paramagnetic and fully ferro-
magnetic HEGs, so the total MD is equal to the spin-up MD.
The integral in the expectation value of Eq. �2� is estimated
by Monte Carlo sampling at each configuration R generated
by the QMC algorithms, and the results are averaged. The
use of a finite number of points in the evaluation of the
integral at each R does not bias the QMC estimate of ��k�.

Suppose our finite simulation cell has area A and the
simulation-cell Bloch vector is ks. We may write

��r,r2, . . . ,rN�
��R�

=
1

A
	
G

cG�R�exp�i�G + ks� · r� , �3�

where the 
G� are the simulation-cell reciprocal lattice
points. Hence it is clear that ��k� is only nonzero if k=G
+ks for some G. The MD is only defined for a discrete set of
momenta at any given ks. One cannot twist average as such;
instead, altering ks leads to the MD being defined at a dif-

TABLE I. Energy, variance, and percentage of correlation en-
ergy retrieved using different methods for a 58-electron paramag-
netic Fermi fluid of density parameter rs=5 a.u. Twist averaging
has not been used. “HF,” “SJ-VMC,” “SJB-VMC,” “SJ-DMC,” and
“SJB-DMC” stand for Hartree-Fock theory, VMC with a Slater-
Jastrow wave function, VMC with a Slater-Jastrow-backflow wave
function, DMC with a Slater-Jastrow wave function, and DMC with
a Slater-Jastrow-backflow wave function, respectively. The DMC
energy data have been extrapolated to zero time step. The data
marked with an asterisk were produced by Kwon et al. �Ref. 19�,
while the data marked with a dagger were generated by Attaccalite
et al. �Ref. 21� at a time step of 0.1 a.u. �i.e., their data were not
extrapolated to zero time step�. The fraction of the correlation en-
ergy retrieved is computed on the assumption that our Slater-
Jastrow-backflow DMC calculation retrieves 100% of the correla-
tion energy.

Method
Energy

�a.u./elec.�
Var.

�a.u.� Frac. corr. en

HF −0.100 222 006 0%

SJ-VMC −0.148 211 0�8� 0.0196 96.910�4�%
SJ-VMC� −0.146 80�5� 94.1�1�%
SJB-VMC −0.149 385 1�6� 0.007 74 99.282�4�%
SJB-VMC� −0.148 80�5� 98.1�1�%
SJ-DMC −0.149 177�8� 98.86�2�%
SJ-DMC� −0.149 00�5� 98.5�1�%
SJ-DMC† −0.149 134�9� 98.77�2�%
SJB-DMC −0.149 741�2� 100%

SJB-DMC� −0.149 55�5� 99.6�1�%
SJB-DMC† −0.149 518�9� 99.55�2�%
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ferent set of momenta. We simply report MDs obtained using
ks=0 �i.e., no twist was applied�.

2. Evaluating the SSF

The SSF may be evaluated as

S�k� =
1

N
��n̂�k�n̂�− k� − �n̂�k��n̂�− k�� , �4�

where

n̂�k� = 	
i

exp�− ik · ri� �5�

is the Fourier transform of the density operator. S�k� is only
nonzero at simulation-cell G vectors, even if the simulation-
cell Bloch vector is nonzero. We can twist average when we
calculate S�G�.

3. Evaluating the PCF

The spherically averaged PCF is

g�r� =
�

4�r2N2�	
i�j

���ri − r j� − r�� , �6�

which can be evaluated by binning the electron-electron dis-
tances in the configurations generated by the QMC algo-
rithms. Twist averaging introduces no complications.

4. Extrapolated estimation

If Â is an operator that does not commute with the Hamil-
tonian then the errors in the VMC and DMC estimates AVMC

and ADMC of the expectation value of Â are linear in the error
in the trial wave function; however, the error in the extrapo-
lated estimate 2ADMC−AVMC is quadratic in the error in the
trial wave function.2 We have used extrapolated estimation in
most of our calculations of expectation values. Examples of
extrapolation are shown in Figs. 5 and 8, and the upper panel
of Fig. 4. In each case the VMC, DMC, and extrapolated
estimates are in good agreement, implying that the error re-
sulting from the use of a DMC mixed estimate is small.
Gori-Giorgi et al.7 used reptation22 QMC to accumulate the
PCF and SSF in which pure expectation values are obtained
with respect to the fixed-node ground-state wave function so
that extrapolation is unnecessary.

C. Time-step and population-control biases

Finite-time-step errors in the twist-averaged DMC energy
were removed by linear extrapolation to zero time step. An
example is shown in Fig. 1; it can be seen that the time-step
bias is in fact very small in any case. We checked that the
other expectation values were converged with respect to the
time step: see Figs. 4 and 5. We used a target population of
1600 configurations in all our DMC calculations, making
population-control bias negligible.

D. Finite-size bias

Expectation values obtained in a finite N-electron cell
subject to periodic boundary conditions �PBC� differ from

the corresponding infinite-system values because of “single-
particle” shell-filling effects, as well as the neglect of long-
ranged correlations and the compression of the exchange-
correlation hole into the simulation cell. Single-particle
finite-size effects can be removed from the energy, the SSF,
and the PCF by twist averaging, as explained in Sec. II A.
We have recently demonstrated that the finite-size error in
the energy per particle in a 2D HEG falls off as N−5/4, en-
abling us accurately to extrapolate QMC energies to infinite-
system size.23 For the PCF, SSF, and MD we simply verified
that the QMC data had converged with respect to system size
�see Figs. 5 and 8, and the lower panel of Fig. 4�.

III. RESULTS

A. Energies

DMC energies of paramagnetic Fermi fluids at different
densities and system sizes are shown in Table II. Our results
for the energies of different phases of the 2D HEG at low
density are reported elsewhere.5 At rs=5 and 10 a.u., Rap-
isarda and Senatore4 obtained infinite-system energies of
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FIG. 1. �Color online� Twist-averaged DMC energy against time
step for paramagnetic Fermi fluids of density parameter rs=5 a.u.
at different system sizes N. “SJ” and “SJB” refer to Slater-Jastrow
and Slater-Jastrow-backflow wave functions, respectively.

TABLE II. Twist-averaged DMC energy, extrapolated to zero
time step, for N-electron paramagnetic Fermi fluids of density pa-
rameter rs. Where N=	, the DMC energy has been extrapolated to
infinite-system size.

rs

�a.u.� N
DMC energy

�a.u./elec.�

1 50 −0.2125�2�
1 74 −0.2122�2�
1 114 −0.2116�3�
1 	 −0.2104�6�
5 58 −0.149 95�2�
5 114 −0.149 77�1�
5 	 −0.149 63�3�
10 58 −0.085 504�5�
10 74 −0.085 52�1�
10 114 −0.085 445�3�
10 	 −0.085 399�6�
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−0.149 0�1� and −0.085 12�2� a.u. per particle using DMC
with a Slater-Jastrow wave function. Kwon et al.19 obtained
DMC energies of −0.2098�3�, −0.1495�1�, and
−0.085 36�2� a.u. per electron at rs=1, 5, and 10, respec-
tively, using a Slater-Jastrow-backflow wave function. Our
DMC energies are somewhat lower than these data, as ex-
pected from the results shown in Table I.

Let the correlation energy per electron Ec be the differ-
ence between the ground-state energy per electron and the
Hartree-Fock �HF� energy. We fit the form proposed by At-
taccalite et al.21 to our correlation energies for paramagnetic
HEGs as follows:

Ec = A0 + �B0rs + C0rs
2 + D0rs

3�


log�1 +
1

E0rs + F0rs
3/2 + G0rs

2 + H0rs
3� , �7�

where A0=−0.1925, B0=�2�10−3�� / �3��, and D0=−A0H0.
We fit to the infinite-system DMC energies shown in Table II
and also to the DMC energies of low-density paramagnetic
HEGs reported in Ref. 5 �at rs=20, 25, 30, 35, and 40 a.u.�.
Our fitting parameters are shown in Table III, and the corre-
lation energies of paramagnetic Fermi fluids obtained by dif-
ferent authors relative to that of Attaccalite et al.21 are shown
in Fig. 2. Our correlation energies are lower than those of the
other authors because of our use of flexible backflow func-
tions. Equation �7� can be used as a local-density-
approximation exchange-correlation functional in DFT cal-
culations for 2D systems.

Unlike Attaccalite et al.,21 we fit Eq. �7� to paramagnetic
data only; we do not attempt to calculate the spin-
polarization dependence of the energy of the HEG.

B. MDs

The MDs of paramagnetic HEGs are shown in Fig. 3, and
a more detailed graph of the MD at rs=5 a.u. is shown in
Fig. 4. The upper panel of Fig. 4 demonstrates that the ex-
trapolated estimate is accurate and that the DMC results are
converged with respect to the time step. It is clear from the
lower panel of Fig. 4 that, although backflow makes a sig-

nificant improvement to the QMC energy estimates, it has
very little effect on the MD. The inclusion of backflow re-
sults in a small transfer of weight to wave vectors above the
Fermi edge, as expected, because a greater fraction of corre-
lation energy is retrieved. It can also be seen that the MDs
obtained at different system sizes are in agreement. We have
therefore plotted data obtained at different system sizes to-
gether in Fig. 3. To our knowledge, the only previous QMC
studies of the MD of the 2D HEG are those of Tanatar and
Ceperley3 and Conti.9 At rs=10 a.u., Tanatar and Ceperley3

found that the MD at small wave vectors is lower than the
value near the Fermi edge. Our data do not show this unusual
feature. Tanatar and Ceperley3 used a relatively inflexible
Slater-Jastrow wave function, which may be the reason for
the discrepancy. Giuliani and Vignale10 quoted a formula for
the MD, which was obtained by fitting to QMC data gener-
ated by Conti.9 We have fitted our MDs to a simplified ver-
sion of the form suggested in Ref. 10,

TABLE III. Fitting parameters in Eq. �7� for the correlation
energy of a paramagnetic HEG. Equation �7� was fitted to the
infinite-system DMC energies given in Table II and the low-density
energy data given in Ref. 5. It was found that fixing H0=0 did not
affect the quality of the fit.

Parameter Value

A0 −0.1925

B0 0.086 313 631

C0 0.069 795 68

D0 0.0

E0 1.053 100 3

F0 0.040 691 22

G0 0.360 595 3

H0 0.0
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FIG. 2. �Color online� Correlation energy of a paramagnetic
Fermi fluid relative to the results of Attaccalite et al. �Ref. 21�. The
results obtained by Kwon et al. �Ref. 19� and Rapisarda and Sena-
tore �Ref. 4� are shown for comparison. The results of Tanatar and
Ceperley �Ref. 3� are not shown because they are systematically too
low in energy �Ref. 19�.
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FIG. 3. �Color online� Extrapolated MD ��k� for paramagnetic
Fermi fluids. kF=�2 /rs is the Fermi wave vector of the paramag-
netic fluid and �F=rs

2 / �2�� is the value of the Fermi distribution.
The results were obtained using a Slater-Jastrow-backflow wave
function and a variety of system sizes with N�50 in each case.
Twist averaging was not used. For comparison, we have plotted the
MD obtained by Tanatar and Ceperley �Ref. 3� �open symbols� and
Eq. �8.133� of Ref. 10 �dotted lines�.
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� =
1

2�a0 + a1x + a2x2 + a3x3 + a4x4 if x � �2
4g�0�rs

2

x6 + �a7 + a8x + a9x2�exp�−
�x−�2�2

a6
2 � if x  �2� ,

�8�

where x=rsk and ai are fitting parameters. g�0� is the contact
PCF, which we evaluated using Eq. �9�. The fitted parameters

are given in Table IV. Our values for the discontinuity at the
Fermi edge are slightly smaller than those reported in Ref.
10.

C. SSFs

VMC and DMC SSFs of a 50-electron paramagnetic HEG
at rs=1 a.u. are shown in Fig. 5. It can be seen that the
difference between the VMC and DMC data is in most cases
smaller than the difference between the two sets of DMC
data, implying that the errors due to extrapolated estimation
are small. On the other hand, the difference between the data
with ks=0 and the twist-averaged data is significant. In par-
ticular, the former has some unusual features close to integer

TABLE IV. Fitting parameters in Eq. �8� for the MD and dis-
continuity Z in the MD at the Fermi edge. The MD is normalized
such that the Fermi distribution is 1.

rs

�a.u.� 1 5 10 30

a0 1.950 1.649 1.410 0.9745

a1 −0.073 42 −0.038 99 0.3366 −0.0535

a2 0.2805 0.074 18 −1.199 0.1509

a3 −0.3884 −0.1920 1.148 −0.3888

a4 0.1365 0.021 98 −0.4363 0.1473

a6 1.171 1.017 1.035 1.379

a7 0.1648 1.682 2.091 1.428

a8 −0.1135 −1.282 −1.566 −0.8264

a9 0.021 19 0.2773 0.3438 0.1599

Z 0.866 0.398 0.209 0.0555
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FIG. 5. �Color online� SSF S�k� for a paramagnetic HEG of
density parameter rs=1 a.u. kF=�2 /rs is the Fermi wave vector of
the paramagnetic fluid. The system size was N=50 electrons, except
where indicated otherwise. Results obtained with ks=0 �“PBC”�
and “TA” are shown. A Slater-Jastrow-backflow wave function was
used in each case. The inset shows in greater detail one of the
regions in which the twist-averaged and nontwist-averaged data
disagree.
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FIG. 6. �Color online� Extrapolated SSF S�k� for HEGs of den-
sity parameter rs and spin polarization �. kF=�2 /rs is the Fermi
wave vector of the paramagnetic fluid. The results were obtained
using a Slater-Jastrow-backflow wave function and twist averaging.
System sizes of N=90, 114, 90, and 114 were used in the paramag-
netic calculations at rs=20, 25, 30, and 35 a.u., respectively; and a
system size of N=45 was used in the ferromagnetic calculation at
rs=20 a.u. The inset shows the peak in greater detail.
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FIG. 4. �Color online� MD ��k� for paramagnetic Fermi fluids at
rs=5 a.u. obtained using VMC and DMC at different system sizes
N. Backflow was used, except for the data labeled as SJ. The upper
panel shows the results obtained at N=58 using VMC and DMC
with different time steps �. The lower panel shows the effect of
changing the system size and using backflow on the extrapolated
MD. Twist averaging was not used. kF=�2 /rs is the Fermi wave
vector of the paramagnetic fluid and �F=rs

2 / �2�� is the value of the
Fermi distribution.
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multiples of the Fermi wave vector, one of which is shown in
the inset to Fig. 5. Elsewhere, twist averaging has only a
small effect. At all densities we find that the twist-averaged
SSF in a 50- or 58-electron cell is in agreement with the SSF
in a 114-electron cell, as can be seen in Fig. 5. Since the
statistical errors are less significant at the smaller system
sizes, we have used N=50 or 58 electrons in the high-density
data reported below.

The SSFs of paramagnetic and ferromagnetic fluids at low
density are shown in Fig. 6, while the SSFs of paramagnetic
fluids at high density are shown in Fig. 7. It can be seen that
a peak in the SSF at about k=2.62kF appears at low density,
perhaps due to incipient Wigner crystallization. Our SSFs are
in good agreement with those of Gori-Giorgi et al.7

D. PCFs

We compare PCFs obtained at different system sizes using
different QMC methods for a paramagnetic HEG at rs

=5 a.u. in Fig. 8. The difference between the VMC and
DMC PCFs, and the difference between extrapolated PCFs
obtained with and without backflow are small, implying that
the error in the extrapolated PCF is small. Twist averaging
has a small effect on the PCF, but the twist-averaged PCFs at
N=58 and N=114 electrons are very similar, implying that
the finite-size error in the twist-averaged PCF at N=58 is
small. We have also verified that the PCF is converged with
respect to the DMC time step.

Our PCFs are shown in Fig. 9 �high density� and Fig. 10
�low density�, along with the results of Gori-Giorgi et al.7

Our PCFs are in good agreement with those of Gori-Giorgi et
al.7 �as expected, from the SSF results in Fig. 7�.

The contact PCF g�0� is especially important in the con-
struction of generalized-gradient-approximation exchange-
correlation functionals.10 We give our g�0� values in Table V,
and we plot rsg�0� against rs in Fig. 11, along with some
other results in the literature. Because our PCFs have con-
verged with respect to system size, and our VMC and DMC
results agree with each other when backflow is used, we have
simply averaged our VMC and DMC g�0� data at different
system sizes in order to reduce the statistical noise in our
estimate of the contact PCF. Our results are in reasonably
good agreement with the fit to the earlier QMC data of Gori-

TABLE V. Contact PCF of paramagnetic HEGs at five different
densities. Twist-averaged VMC and DMC results obtained at differ-
ent system sizes were averaged to obtain these data.

rs

�a.u.� g�0�

1 0.1517�4�
3 0.0227�2�
5 0.0050�3�
7 0.001 25�5�
10 0.000 24�2�

3 4 5 6
k

F
r

0.99

1.00

1.01

1.02

1.03

1.04

g(
r)

Ext.; N = 58; PBC; SJB
VMC; N = 58; TA; SJB
DMC; N = 58; TA; SJB
Ext.; N = 58; TA; SJB
Ext.; N = 58; TA; SJ
Ext.; N = 114; TA; SJB

FIG. 8. �Color online� VMC, DMC, and extrapolated �“Ext.”�
PCFs g�r� for a paramagnetic Fermi fluid of density parameter rs

=5 a.u. at different system sizes N. Twist averaging was used in the
curves labeled TA but not in the one labeled PBC. Slater-Jastrow
and Slater-Jastrow-backflow wave functions were used in the
curves labeled SJ and SJB, respectively. kF=�2 /rs is the Fermi
wave vector of the paramagnetic fluid.
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FIG. 9. �Color online� Extrapolated total PCF g�r� for paramag-
netic Fermi fluids of density parameter rs. kF=�2 /rs is the Fermi
wave vector of the paramagnetic fluid. HF stands for Hartree-Fock
theory. Twist averaging was used and the QMC calculations were
performed at system sizes of N=50, 58, and 58 electrons at rs=1, 5,
and 10 a.u. The dotted lines show the data of Gori-Giorgi et al.
�Ref. 7�, which are almost indistinguishable from our data.
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FIG. 7. �Color online� Extrapolated SSF S�k� for paramagnetic
HEGs at high density. kF=�2 /rs is the Fermi wave vector. Slater-
Jastrow-backflow wave functions and twist averaging were used.
The system sizes are N=50, 58, and 58 at rs=1, 5, and 10 a.u.,
respectively. The curve marked HF shows the Hartree-Fock SSF.
The dotted lines show the SSF obtained by taking the Fourier trans-
form of the PCF data of Gori-Giorgi et al. �Ref. 7�.
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Giorgi et al.7 and also with the expression for g�0� obtained
using ladder theory by Nagano et al.24 Interestingly, our re-
sults clearly disagree with the more recent calculation of g�0�
within ladder theory by Qian,8 which involved fewer ap-
proximations than the work of Nagano et al.24 The close
agreement between our results and those of Nagano et al.24

must therefore be regarded as a coincidence. The fact that
our QMC calculations, using a different trial wave function,
are consistent with the data of Gori-Giorgi et al.7 strongly
suggests that the QMC results for g�0� are reliable, whereas
ladder theory is of limited use at low densities. Our results
are also in clear disagreement with the formula proposed by
Polini et al.,25 which interpolates between the results of the
ladder theory at high density �where it should be exact� and
a partial-wave analysis at low density.

The fit to our g�0� data shown in Fig. 11 is

g�0� =
1

2
��1 + Ars + Brs

2�exp�− Ers� rs � 1

1 + ars + brs
2 + crs

3 rs � 1
� , �9�

where A=−0.257 24, B=0.071 116, and E=0.985 53 were
obtained by fitting. Polini et al.25 showed that limrs→0g�0�
= �1 /2��1−1.372rs�, so we have set a=−1.372 and deter-

mined b=0.997 618 888 and c=−0.321 846 705 6 by match-
ing the value and derivative of g�0� at rs=1 a.u..26

IV. CONCLUSIONS

We have studied the ground-state properties of the fluid
phases of the 2D HEG using QMC. We used highly accurate
trial wave functions and dealt with finite-size effects by twist
averaging. Twist averaging removes some strange features in
the SSF, but our PCFs and SSFs are in good agreement with
analytic fits to earlier QMC data,7 confirming the accuracy of
these formulas. Our MDs show some qualitative differences
from earlier QMC results3 however; in particular, we do not
observe an increase in the MD as the Fermi edge is ap-
proached at low density. Finally, we have reported DMC
energy data for the high-density 2D HEG, which we used to
construct an exchange-correlation functional for 2D DFT cal-
culations.
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