7,151 research outputs found

    Estimating Parasitism of Colorado Potato Beetle Eggs, \u3ci\u3eLeptinotarsa Decemlineata\u3c/i\u3e (Coleoptera: Chrysomelidae), by \u3ci\u3eEdovum Puttleri\u3c/i\u3e (Hymenoptera: Eulophidae)

    Get PDF
    A computer simulation was used to evaluate methods for estimating parasitism of Colorado potato beetle egg mass populations by Edovum puttleri. The algorithm incorporated the specific attack behavior of E. puttleri, and a development time for parasitized egg masses of ca. 2.9 times that of healthy egg masses. Of the methods compared, a modification of Southwood\u27s graphical technique was found to be most accurate in relation to the true parasitism derived from the algorithm. A regression equation is presented to correct the error in this method at high levels of parasitism. A second simulation was used to test the accuracy of this correcter where in a jacknife procedure was used to generate a mean and variance for estimates of parasitism

    Many-body quantum dynamics of polarisation squeezing in optical fibre

    Get PDF
    We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fibre, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibres. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.Comment: 4 pages, 4 figure

    The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM

    Get PDF
    We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral Φ~6\tilde\Phi_6 with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar mathcalN=4\\mathcal{N}=4 super-Yang-Mills theory, Ω(1)\Omega^{(1)} and Ω(2)\Omega^{(2)}. The derivative of Ω(2)\Omega^{(2)} with respect to one of the conformal invariants yields Φ~6\tilde\Phi_6, while another first-order differential operator applied to Φ~6\tilde\Phi_6 yields Ω(1)\Omega^{(1)}. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in mathcalN=4\\mathcal{N}=4 super-Yang-Mills.Comment: 18 pages, 2 figure

    Kappa-symmetric deformations of M5-brane dynamics

    Full text link
    We calculate the first supersymmetric and kappa-symmetric derivative deformation of the M5-brane worldvolume theory in a flat eleven-dimensional background. By applying cohomological techniques we obtain a deformation of the standard constraint of the superembedding formalism. The first possible deformation of the constraint and hence the equations of motion arises at cubic order in fields and fourth order in a fundamental length scale ll. The deformation is unique up to this order. In particular this rules out any induced Einstein-Hilbert terms on the worldvolume. We explicitly calculate corrections to the equations of motion for the tensor gauge supermultiplet.Comment: 17 pages. Additional comments in section

    On All-loop Integrands of Scattering Amplitudes in Planar N=4 SYM

    Get PDF
    We study the relationship between the momentum twistor MHV vertex expansion of planar amplitudes in N=4 super-Yang-Mills and the all-loop generalization of the BCFW recursion relations. We demonstrate explicitly in several examples that the MHV vertex expressions for tree-level amplitudes and loop integrands satisfy the recursion relations. Furthermore, we introduce a rewriting of the MHV expansion in terms of sums over non-crossing partitions and show that this cyclically invariant formula satisfies the recursion relations for all numbers of legs and all loop orders.Comment: 34 pages, 17 figures; v2: Minor improvements to exposition and discussion, updated references, typos fixe

    Local Spacetime Physics from the Grassmannian

    Full text link
    A duality has recently been conjectured between all leading singularities of n-particle N^(k-2)MHV scattering amplitudes in N=4 SYM and the residues of a contour integral with a natural measure over the Grassmannian G(k,n). In this note we show that a simple contour deformation converts the sum of Grassmannian residues associated with the BCFW expansion of NMHV tree amplitudes to the CSW expansion of the same amplitude. We propose that for general k the same deformation yields the (k-2) parameter Risager expansion. We establish this equivalence for all MHV-bar amplitudes and show that the Risager degrees of freedom are non-trivially determined by the GL(k-2) "gauge" degrees of freedom in the Grassmannian. The Risager expansion is known to recursively construct the CSW expansion for all tree amplitudes, and given that the CSW expansion follows directly from the (super) Yang-Mills Lagrangian in light-cone gauge, this contour deformation allows us to directly see the emergence of local space-time physics from the Grassmannian.Comment: 22 pages, 13 figures; v2: minor updates, typos correcte

    Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled atom laser beams

    Get PDF
    We examine the properties of an atom laser produced by outcoupling from a Bose-Einstein condensate with squeezed light. We model the multimode dynamics of the output field and show that a significant amount of squeezing can be transfered from an optical mode to a propagating atom laser beam. We use this to demonstrate that two-mode squeezing can be used to produce twin atom laser beams with continuous variable entanglement in amplitude and phase.Comment: 11 pages, 14 figure

    Amplitudes at Weak Coupling as Polytopes in AdS_5

    Full text link
    We show that one-loop scalar box functions can be interpreted as volumes of geodesic tetrahedra embedded in a copy of AdS_5 that has dual conformal space-time as boundary. When the tetrahedron is space-like, it lies in a totally geodesic hyperbolic three-space inside AdS_5, with its four vertices on the boundary. It is a classical result that the volume of such a tetrahedron is given by the Bloch-Wigner dilogarithm and this agrees with the standard physics formulae for such box functions. The combinations of box functions that arise in the n-particle one-loop MHV amplitude in N=4 super Yang-Mills correspond to the volume of a three-dimensional polytope without boundary, all of whose vertices are attached to a null polygon (which in other formulations is interpreted as a Wilson loop) at infinity.Comment: 16 pages, 5 figure

    TB151: The Balsam Gall Midge--An Economic Pest of Balsam Fir Christmas Trees

    Get PDF
    This technical bulletin summarizes all previous published research on the balsam gall midge. Also included are new data on the effect of late bud burst on midge oviposition and the degree of population regulation of the gallmaker by its inquiline.https://digitalcommons.library.umaine.edu/aes_techbulletin/1051/thumbnail.jp

    An Analytic Result for the Two-Loop Hexagon Wilson Loop in N = 4 SYM

    Full text link
    In the planar N=4 supersymmetric Yang-Mills theory, the conformal symmetry constrains multi-loop n-edged Wilson loops to be basically given in terms of the one-loop n-edged Wilson loop, augmented, for n greater than 6, by a function of conformally invariant cross ratios. We identify a class of kinematics for which the Wilson loop exhibits exact Regge factorisation and which leave invariant the analytic form of the multi-loop n-edged Wilson loop. In those kinematics, the analytic result for the Wilson loop is the same as in general kinematics, although the computation is remarkably simplified with respect to general kinematics. Using the simplest of those kinematics, we have performed the first analytic computation of the two-loop six-edged Wilson loop in general kinematics.Comment: 17 pages. Extended discussion on how the QMRK limit is taken. Version accepted by JHEP. A text file containing the Mathematica code with the analytic expression for the 6-point remainder function is include
    • …
    corecore