7,282 research outputs found

    Many-body quantum dynamics of polarisation squeezing in optical fibre

    Get PDF
    We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fibre, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibres. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.Comment: 4 pages, 4 figure

    Confinement induced resonances in anharmonic waveguides

    Full text link
    We develop the theory of anharmonic confinement-induced resonances (ACIR). These are caused by anharmonic excitation of the transverse motion of the center of mass (COM) of two bound atoms in a waveguide. As the transverse confinement becomes anisotropic, we find that the COM resonant solutions split for a quasi-1D system, in agreement with recent experiments. This is not found in harmonic confinement theories. A new resonance appears for repulsive couplings (a3D>0a_{3D}>0) for a quasi-2D system, which is also not seen with harmonic confinement. After inclusion of anharmonic energy corrections within perturbation theory, we find that these ACIR resonances agree extremely well with anomalous 1D and 2D confinement induced resonance positions observed in recent experiments. Multiple even and odd order transverse ACIR resonances are identified in experimental data, including up to N=4 transverse COM quantum numbers.Comment: 16 pages,6 fugure

    Naturally-phasematched second harmonic generation in a whispering gallery mode resonator

    Get PDF
    We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering gallery mode resonator made of Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This suggests an application of our frequency doubler as a source of non-classical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering gallery mode resonator provides the relative conversion efficiencies for frequency doubling in various modes

    Some Aspects of the Biology of a Predaceous Anthomyiid Fly, \u3ci\u3eCoenosia Tigrina\u3c/i\u3e

    Get PDF
    The results of a two-year study in Michigan on the incidence of Coenosia tigrina adults under different onion production practices is presented. In Michigan, C. tigrina has three generations and is more abundant in organic agroecosystems than chemically-intensive onion production systems

    Differential equations for multi-loop integrals and two-dimensional kinematics

    Full text link
    In this paper we consider multi-loop integrals appearing in MHV scattering amplitudes of planar N=4 SYM. Through particular differential operators which reduce the loop order by one, we present explicit equations for the two-loop eight-point finite diagrams which relate them to massive hexagons. After the reduction to two-dimensional kinematics, we solve them using symbol technology. The terms invisible to the symbols are found through boundary conditions coming from double soft limits. These equations are valid at all-loop order for double pentaladders and allow to solve iteratively loop integrals given lower-loop information. Comments are made about multi-leg and multi-loop integrals which can appear in this special kinematics. The main motivation of this investigation is to get a deeper understanding of these tools in this configuration, as well as for their application in general four-dimensional kinematics and to less supersymmetric theories.Comment: 25 pages, 7 figure

    Quantum limits to center-of-mass measurements

    Get PDF
    We discuss the issue of measuring the mean position (center-of-mass) of a group of bosonic or fermionic quantum particles, including particle number fluctuations. We introduce a standard quantum limit for these measurements at ultra-low temperatures, and discuss this limit in the context of both photons and ultra-cold atoms. In the case of fermions, we present evidence that the Pauli exclusion principle has a strongly beneficial effect, giving rise to a 1/N scaling in the position standard-deviation -- as opposed to a 1/N1/\sqrt{N} scaling for bosons. The difference between the actual mean-position fluctuation and this limit is evidence for quantum wave-packet spreading in the center-of-mass. This macroscopic quantum effect cannot be readily observed for non-interacting particles, due to classical pulse broadening. For this reason, we also study the evolution of photonic and matter-wave solitons, where classical dispersion is suppressed. In the photonic case, we show that the intrinsic quantum diffusion of the mean position can contribute significantly to uncertainties in soliton pulse arrival times. We also discuss ways in which the relatively long lifetimes of attractive bosons in matter-wave solitons may be used to demonstrate quantum interference between massive objects composed of thousands of particles.Comment: 12 pages, 6 figures. Submitted to PRA. Revised to include more references as well as a discussion of fermionic center-of-mas

    First-order coherence versus entanglement in a nano-mechanical cavity

    Full text link
    The coherence and correlation properties of effective bosonic modes of a nano-mechanical cavity composed of an oscillating mirror and containing an optical lattice of regularly trapped atoms are studied. The system is modeled as a three-mode system, two orthogonal polariton modes representing the coupled optical lattice and the cavity mode, and one mechanical mode representing the oscillating mirror. We examine separately the cases of two-mode and three-mode interactions which are distinguished by a suitable tuning of the mechanical mode to the polariton mode frequencies. In the two-mode case, we find that the occurrence of entanglement between one of the polariton modes and the mechanical mode is highly sensitive to the presence of the first-order coherence between the modes. In particular, the creation of the first-order coherence among the modes is achieved at the expense of entanglement between the modes. In the three-mode case, we show that no entanglement is created between the independent polariton modes if both modes are coupled to the mechanical mode by the parametric interaction. There is no entanglement between the polaritons even if the oscillating mirror is damped by a squeezed vacuum field. The interaction creates the first-order coherence between the polaritons and the degree of coherence can, in principle, be as large as unity. This demonstrates that the oscillating mirror can establish the first-order coherence between two independent thermal modes. A further analysis shows that two independent thermal modes can be made entangled in the system only when one of the modes is coupled to the intermediate mode by a parametric interaction and the other is coupled by a linear-mixing interaction.Comment: Published versio

    Yangian symmetry of light-like Wilson loops

    Get PDF
    We show that a certain class of light-like Wilson loops exhibits a Yangian symmetry at one loop, or equivalently, in an Abelian theory. The Wilson loops we discuss are equivalent to one-loop MHV amplitudes in N=4 super Yang-Mills theory in a certain kinematical regime. The fact that we find a Yangian symmetry constraining their functional form can be thought of as the effect of the original conformal symmetry associated to the scattering amplitudes in the N=4 theory.Comment: 15 pages, 5 figure

    Effective diffusion constant in a two dimensional medium of charged point scatterers

    Full text link
    We obtain exact results for the effective diffusion constant of a two dimensional Langevin tracer particle in the force field generated by charged point scatterers with quenched positions. We show that if the point scatterers have a screened Coulomb (Yukawa) potential and are uniformly and independently distributed then the effective diffusion constant obeys the Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained for pure Coulomb scatterers frozen in an equilibrium configuration of the same temperature as that of the tracer.Comment: 9 pages IOP LaTex, no figure

    Raman-induced limits to efficient squeezing in optical fibers

    Full text link
    We report new experiments on polarization squeezing using ultrashort photonic pulses in a single pass of a birefringent fiber. We measure what is to our knowledge a record squeezing of -6.8 +/- 0.3 dB in optical fibers which when corrected for linear losses is -10.4 +/- 0.8 dB. The measured polarization squeezing as a function of optical pulse energy, which spans a wide range from 3.5-178.8 pJ, shows a very good agreement with the quantum simulations and for the first time we see the experimental proof that Raman effects limit and reduce squeezing at high pulse energy.Comment: 3 pages, 3 figure
    • …
    corecore