678 research outputs found
Electronic transport in Si:P delta-doped wires
Despite the importance of Si:P delta-doped wires for modern nanoelectronics,
there are currently no computational models of electron transport in these
devices. In this paper we present a nonequilibrium Green's function model for
electronic transport in a delta-doped wire, which is described by a
tight-binding Hamiltonian matrix within a single-band effective-mass
approximation. We use this transport model to calculate the current-voltage
characteristics of a number of delta-doped wires, achieving good agreement with
experiment. To motivate our transport model we have performed
density-functional calculations for a variety of delta-doped wires, each with
different donor configurations. These calculations also allow us to accurately
define the electronic extent of a delta-doped wire, which we find to be at
least 4.6 nm.Comment: 13 pages, 11 figure
Effective mass theory of monolayer \delta-doping in the high-density limit
Monolayer \delta-doped structures in silicon have attracted renewed interest
with their recent incorporation into atomic-scale device fabrication strategies
as source and drain electrodes and in-plane gates. Modeling the physics of
\delta-doping at this scale proves challenging, however, due to the large
computational overhead associated with ab initio and atomistic methods. Here,
we develop an analytical theory based on an effective mass approximation. We
specifically consider the Si:P materials system, and the limit of high donor
density, which has been the subject of recent experiments. In this case,
metallic behavior including screening tends to smooth out the local disorder
potential associated with random dopant placement. While smooth potentials may
be difficult to incorporate into microscopic, single-electron analyses, the
problem is easily treated in the effective mass theory by means of a jellium
approximation for the ionic charge. We then go beyond the analytic model,
incorporating exchange and correlation effects within a simple numerical model.
We argue that such an approach is appropriate for describing realistic,
high-density, highly disordered devices, providing results comparable to
density functional theory, but with greater intuitive appeal, and lower
computational effort. We investigate valley coupling in these structures,
finding that valley splitting in the low-lying \Gamma band grows much more
quickly than the \Gamma-\Delta band splitting at high densities. We also find
that many-body exchange and correlation corrections affect the valley splitting
more strongly than they affect the band splitting
Ab initio calculation of energy levels for phosphorus donors in silicon
The s manifold energy levels for phosphorus donors in silicon are important input parameters for the design and modeling of electronic devices on the nanoscale. In this paper we calculate these energy levels from first principles using density functional theory. The wavefunction of the donor electron’s ground state is found to have a form that is similar to an atomic s orbital, with an effective Bohr radius of 1.8 nm. The corresponding binding energy of this state is found to be 41 meV, which is in good agreement with the currently accepted value of 45.59 meV. We also calculate the energies of the excited 1s(T 2) and 1s(E) states, finding them to be 32 and 31 meV respectively
Ab initio calculation of energy levels for phosphorus donors in silicon
The s manifold energy levels for phosphorus donors in silicon are important input parameters for the design and modeling of electronic devices on the nanoscale. In this paper we calculate these energy levels from first principles using density functional theory. The wavefunction of the donor electron’s ground state is found to have a form that is similar to an atomic s orbital, with an effective Bohr radius of 1.8 nm. The corresponding binding energy of this state is found to be 41 meV, which is in good agreement with the currently accepted value of 45.59 meV. We also calculate the energies of the excited 1s(T 2) and 1s(E) states, finding them to be 32 and 31 meV respectively
The evolution of the ISOLDE control system
The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft WindowsTM through a Novell NetWare4TM local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface
Impact of national lockdown on the hyperacute stroke care and rapid transient ischaemic attack outpatient service in a comprehensive tertiary stroke centre during the COVID-19 pandemic
Background: The COVID-19 pandemic is having major implications for stroke services worldwide. We aimed to study the impact of the national lockdown period during the COVID-19 outbreak on stroke and transient ischemic attack (TIA) care in London, UK. Methods: We retrospectively analyzed data from a quality improvement registry of consecutive patients presenting with acute ischemic stroke and TIA to the Stroke Department, Imperial College Health Care Trust London during the national lockdown period (between March 23rd and 30th June 2020). As controls, we evaluated the clinical reports and stroke quality metrics of patients presenting with stroke or TIA in the same period of 2019. Results: Between March 23rd and 30th June 2020, we documented a fall in the number of stroke admissions by 31.33% and of TIA outpatient referrals by 24.44% compared to the same period in 2019. During the lockdown, we observed a significant increase in symptom onset-to-door time in patients presenting with stroke (median = 240 vs. 160 min, p = 0.020) and TIA (median = 3 vs. 0 days, p = 0.002) and a significant reduction in the total number of patients thrombolysed [27 (11.49%) vs. 46 (16.25%, p = 0.030)]. Patients in the 2020 cohort presented with a lower median pre-stroke mRS (p = 0.015), but an increased NIHSS (p = 0.002). We registered a marked decrease in mimic diagnoses compared to the same period of 2019. Statistically significant differences were found between the COVID and pre-COVID cohorts in the time from onset to door (median 99 vs. 88 min, p = 0.026) and from onset to needle (median 148 vs. 126 min, p = 0.036) for thrombolysis whilst we did not observe any significant delay to reperfusion therapies (door-to-needle and door-to-groin puncture time). Conclusions: National lockdown in the UK due to the COVID-19 pandemic was associated with a significant decrease in acute stroke admission and TIA evaluations at our stroke center. Moreover, a lower proportion of acute stroke patients in the pandemic cohort benefited from reperfusion therapy. Further research is needed to evaluate the long-term effects of the pandemic on stroke care
Determining the Electronic Confinement of a Subsurface Metallic State
Dopant profiles in semiconductors are important for understanding nanoscale electronics. Highly conductive and extremely confined phosphorus doping profiles in silicon, known as Si:P δ-layers, are of particular interest for quantum computer applications, yet a quantitative measure of their electronic profile has been lacking. Using resonantly enhanced photoemission spectroscopy, we reveal the real-space breadth of the Si:P δ-layer occupied states and gain a rare view into the nature of the confined orbitals. We find that the occupied valley-split states of the δ-layer, the so-called 1Γ and 2Γ, are exceptionally confined with an electronic profile of a mere 0.40 to 0.52 nm at full width at half-maximum, a result that is in excellent agreement with density functional theory calculations. Furthermore, the bulk-like Si 3pz orbital from which the occupied states are derived is sufficiently confined to lose most of its pz-like character, explaining the strikingly large valley splitting observed for the 1Γ and 2Γ states
- …