38 research outputs found

    Designing and Reflecting on Active Learning and Flipped Classrooms for Renal Physiology

    Get PDF
    In this paper, we outline a case study describing the incorporation of active learning and flipped classroom techniques in a renal physiology module in 1st year medical school. The module was redesigned over a 2-year period within the teaching for understanding (TfU) framework (generative topics, understanding goals, performances of understanding and ongoing assessment) to include more active learning exercises (clicker response systems centered on clinically relevant problem sets and classroom assessment techniques – CATs), which culminated in flipping the classroom entirely during the 2nd year. The goal, was to evaluate student perceptions of the flipped classroom model and to reflect on the use of active learning generally. In the 1st year, clicker response systems were favorably received by students, however the anonymous nature of the clicker configuration meant it was not possible to track progress of individual students. CATs revealed that content areas without active learning exercises were often deemed the most unclear by students. Student feedback indicated that the flipped classroom model in the 2nd year was positively received, with students noting it encouraged them to attend classes more regularly and they believed it assisted in developing collaborative learning and knowledge application

    Active peer-mentored learning can improve student understanding of physiological concepts in an undergraduate journal club

    Get PDF
    One of the most ubiquitous active learning modalities in the biological sciences at third level is the journal club. Journal club can promote several beneficial learning outcomes for students such as gaining critical reading skills to evaluate the scientific literature, improving scientific literacy, serving as an introduction to new concepts and techniques and improving communication skills. However, it can be difficult for instructors who facilitate journal club to gauge student audiences' understanding of topics being related by presenters. At the University of Nevada, Reno School of Medicine, international life sciences undergraduate students enrolled in our research program undergo a 12-month placement in selected research laboratories within the medical school in order to develop an understanding of basic medical scientific research and physiological concepts. As such, an integral component of this program is participation in regular journal club sessions which we had assumed helped students to develop such an understanding. However as we had never empirically assessed if this was the case or not, the aim of the current study was to determine if student understanding could be improved by complementing the standard journal club with peer-mentored workshop presentations. Data from this case study suggest that by allowing students to undergo peer-mentored learning in conjunction with journal club, student understanding of physiological concepts, as well as student confidence in presenting and communication, increases

    The effect of high [K(+)]o on spontaneous Ca(2+) waves in freshly isolated interstitial cells of Cajal from the rabbit urethra.

    Get PDF
    Interstitial cells of Cajal (ICC) act as putative pacemaker cells in the rabbit urethra. Pacemaker activity in ICC results from spontaneous global Ca(2+) waves that can be increased in frequency by raising external [K(+)]. The purpose of this study was to elucidate the mechanism of this response. Intracellular [Ca(2+)] was measured in fluo-4-loaded smooth muscle cells (SMCs) and ICC using a Nipkow spinning disk confocal microscope. Increasing [K(+)]o to 60 mmol/L caused an increase in [Ca(2+)]i accompanied by contraction in SMCs. Raising [K(+)]o did not cause contraction in ICC, but the frequency of firing of spontaneous calcium waves increased. Reducing [Ca(2+)]o to 0 mmol/L abolished the response in both cell types. Nifedipine of 1 μmol/L blocked the response of SMC to high [K(+)]o, but did not affect the increase in firing in ICC. This latter effect was blocked by 30 μmol/L NiCl2 but not by the T-type Ca(2+) channel blocker mibefradil (300 nmol/L). However, inhibition of Ca(2+) influx via reverse-mode sodium/calcium exchange (NCX) using either 1 μmol/L SEA0400 or 5 μmol/L KB-R7943 did block the effect of high [K(+)]o on ICC. These data suggest that high K(+) solution increases the frequency of calcium waves in ICC by increasing Ca(2+) influx through reverse-mode NCX

    A semester like no other: A student and lecturer perspective on the impact of Covid-19 on 3rd level academic life

    No full text
    The Covid-19 pandemic has drastically altered the nature of pedagogical life at all levels of academia, with 3rd level education being no exception. The sudden pivot to emergency online teaching at the onset of the pandemic has transformed the day-day activities of both lecturing staff and students alike, with both groups intertwined in an increasingly complex learning curve littered with obstacles and challenges. In this reflective paper, the impact of the Covid-19 pandemic on academic life is summarized by a 3rd year undergraduate student and a newly appointed lecturer in the Department of Life & Health Science at Dundalk Institute of Technology. They reflect on the initial response to the pandemic on their academic activities, how their approach to emergency online teaching evolved over the course of the spring semester and how issues of motivation, engagement and technological access might inform their practice in the future

    Novel Excitatory Effects of Adenosine Triphosphate on Contractile and Pacemaker Activity in Rabbit Urethral Smooth Muscle

    Get PDF
    Purpose: Adenosine triphosphate is thought to be an important neurotransmitter in urethral smooth muscle but its physiological role is still unclear. We characterized the effects of adenosine triphosphate on contractile and pacemaker activity in rabbit urethral smooth muscle. Materials and Methods: Tension recordings were made from strips of rabbit proximal urethral smooth muscle. Membrane currents from freshly isolated smooth muscle cells and interstitial cells of Cajal were recorded using the patch clamp technique. Intracellular Ca 2� was measured using confocal microscopy. Results: Exogenous application of adenosine triphosphate (10 �M) evoked robust contractions that were inhibited by the type 2 purinergic receptor blocker suramin (100 �M) and the selective type 2 purinergic Y1 receptor antagonist MRS2500 (Tocris Bioscience, Ellisville, Missouri) (100 nM). Application of the type 2 purinergic Y receptor agonist 2-MeSADP (1 �M) mimicked the effects of adenosine triphosphate. When smooth muscle cells were studied under voltage clamp at �60 mV, adenosine triphosphate evoked a large single inward current (greater than 1.2 nA) but 2-MeSADP produced a small current (about 16 pA). In contrast, when interstitial cells of Cajal were held at �60 mV, they showed spontaneous transient inward currents that were increased in frequency by adenosine triphosphate and 2-MeSADP. These excitatory effects were inhibited by suramin and MRS2500. Interstitial cells of Cajal showed spontaneous Ca 2� waves that were increased in frequency by adenosine triphosphate and 2-MeSADP. These effects were also inhibited by suramin and MRS2500. Conclusions: Contractile effects of adenosine triphosphate in urethral smooth muscle are mediated by the activation of type 2 purinergic Y receptors on interstitial cells of Cajal

    Tonic inhibition of murine proximal colon is due to nitrergic suppression of Ca2+ signaling in interstitial cells of Cajal

    No full text
    Spontaneous excitability and contractions of colonic smooth muscle cells (SMCs) are normally suppressed by inputs from inhibitory motor neurons, a behavior known as tonic inhibition. The post-junctional cell(s) mediating tonic inhibition have not been elucidated. We investigated the post-junctional cells mediating tonic inhibition in the proximal colon and whether tonic inhibition results from suppression of the activity of Ano1 channels, which are expressed exclusively in interstitial cells of Cajal (ICC). We found that tetrodotoxin (TTX), an inhibitor of nitric oxide (NO) synthesis, L-NNA, and an inhibitor of soluble guanylyl cyclase, ODQ, greatly enhanced colonic contractions. Ano1 antagonists, benzbromarone and Ani9 inhibited the effects of TTX, L-NNA and ODQ. Ano1 channels are activated by Ca2+ release from the endoplasmic reticulum (ER) in ICC, and blocking Ca2+ release with a SERCA inhibitor (thapsigargin) or a store-operated Ca(2+ )entry blocker (GSK 7975 A) reversed the effects of TTX, L-NNA and ODQ. Ca2+ imaging revealed that TTX, L-NNA and ODQ increased Ca2+ transient firing in colonic ICC. Our results suggest that tonic inhibition in the proximal colon occurs through suppression of Ca2+ release events in ICC. Suppression of Ca2+ release in ICC limits the open probability of Ano1 channels, reducing the excitability of electrically-coupled SMCs

    Ca2+‐activated Cl− channels (TMEM16A) underlie spontaneous electrical activity in isolated mouse corpus cavernosum smooth muscle cells

    No full text
    Abstract Penile detumescence is maintained by tonic contraction of corpus cavernosum smooth muscle cells (CCSMC), but the underlying mechanisms have not been fully elucidated. The purpose of this study was to characterize the mechanisms underlying activation of TMEM16A Ca2+‐activated Cl− channels in freshly isolated murine CCSMC. Male C57BL/6 mice aged 10–18 weeks were euthanized via intraperitoneal injection of sodium pentobarbital (100 mg.kg−1). Whole‐cell patch clamp, pharmacological, and immunocytochemical experiments were performed on isolated CCSM. Tension measurements were performed in whole tissue. TMEM16A expression in murine corpus cavernosum was confirmed using immunocytochemistry. Isolated CCSMC developed spontaneous transient inward currents (STICs) under voltage clamp and spontaneous transient depolarizations (STDs) in current clamp mode of the whole cell, perforated patch clamp technique. STICs reversed close to the predicted Cl− equilibrium potential and both STICs and STDs were blocked by the TMEM16A channel blockers, Ani9 and CaCC(inh)‐A01. These events were also blocked by GSK7975A (ORAI inhibitor), cyclopiazonic acid (CPA, sarcoplasmic reticulum [SR] Ca2+‐ATPase blocker), tetracaine (RyR blocker), and 2APB (IP3R blocker), suggesting that they were dependent on Ca2+ release from intracellular Ca2+ stores. Nifedipine (L‐type Ca2+ channel blocker) did not affect STICs, but reduced the duration of STDs. Phenylephrine induced transient depolarizations and transient inward currents which were blocked by Ani9. Similarly, phenylephrine induced phasic contractions of intact corpus cavernosum muscle strips and these events were also inhibited by Ani9. This study suggests that contraction of CCSM is regulated by activation of TMEM16A channels and therefore inhibition of these channels could lead to penile erection

    Inhibitory Neural Regulation of the Ca2+ Transients in Intramuscular Interstitial Cells of Cajal in the Small Intestine

    No full text
    Gastrointestinal motility is coordinated by enteric neurons. Both inhibitory and excitatory motor neurons innervate the syncytium consisting of smooth muscle cells (SMCs) interstitial cells of Cajal (ICC) and PDGFRα+ cells (SIP syncytium). Confocal imaging of mouse small intestines from animals expressing GCaMP3 in ICC were used to investigate inhibitory neural regulation of ICC in the deep muscular plexus (ICC-DMP). We hypothesized that Ca2+ signaling in ICC-DMP can be modulated by inhibitory enteric neural input. ICC-DMP lie in close proximity to the varicosities of motor neurons and generate ongoing Ca2+ transients that underlie activation of Ca2+-dependent Cl− channels and regulate the excitability of SMCs in the SIP syncytium. Electrical field stimulation (EFS) caused inhibition of Ca2+ for the first 2–3 s of stimulation, and then Ca2+ transients escaped from inhibition. The NO donor (DEA-NONOate) inhibited Ca2+ transients and Nω-Nitro-L-arginine (L-NNA) or a guanylate cyclase inhibitor (ODQ) blocked inhibition induced by EFS. Purinergic neurotransmission did not affect Ca2+ transients in ICC-DMP. Purinergic neurotransmission elicits hyperpolarization of the SIP syncytium by activation of K+ channels in PDGFRα+ cells. Generalized hyperpolarization of SIP cells by pinacidil (KATP agonist) or MRS2365 (P2Y1 agonist) also had no effect on Ca2+ transients in ICC-DMP. Peptidergic transmitter receptors (VIP and PACAP) are expressed in ICC and can modulate ICC-DMP Ca2+ transients. In summary Ca2+ transients in ICC-DMP are blocked by enteric inhibitory neurotransmission. ICC-DMP lack a voltage-dependent mechanism for regulating Ca2+ release, and this protects Ca2+ handling in ICC-DMP from membrane potential changes in other SIP cells
    corecore