12 research outputs found

    Directions of seismic anisotropy in laboratory models of mantle plumes

    Get PDF
    A recent expansion in global seismic anisotropy data provides important new insights about the style of mantle convection. Interpretations of these geophysical measurements rely on complex relationships between mineral physics, seismology, and mantle dyn

    Patterns in seismic anisotropy driven by rollback subduction beneath the High Lava Plains

    No full text
    We present three-dimensional laboratory modeling of the evolution of finite strain and compare these to shear wave splitting observations in the Northwest U.S. under the High Lava Plains (HLP). We show that relationships between mantle flow and anisotropy are complicated in subduction zones and factors such as initial orientation of the olivine fast-axis, style of subduction, and time evolving flow are important. Due to increased horizontal shear, systems with a component of rollback subduction have simple trench-normal strain alignment within the central region of the backarc mantle wedge while those with more simple longitudinal sinking are often variable and complex. In the HLP, splitting observations are consistent with rollback-driven laboratory results. © 2011 by the American Geophysical Union

    Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow

    No full text
    The causes of volcanism in the northwestern United States over the past 20 million years are strongly contested. Three drivers have been proposed: melting associated with plate subduction; tectonic extension and magmatism resulting from rollback of a sub

    Plume-slab interaction: The Samoa-Tonga system

    No full text
    Mantle plume behavior near subducting plates is still poorly understood and in fact varies significantly from the classical hotspot model. We investigate using 3D laboratory models how subduction-driven flow relates to the deformation and dispersal of a nearby plume. Results show slab-driven flow severely distorts plume-driven flow, entraining and passively advecting plume material despite its thermal buoyancy. Downdip sinking of the slab initially stalls vertical plume ascent while the combination of downdip and rollback sinking motions redistribute material throughout the system. As a consequence of the subduction-induced flow, surface expressions differ significantly from traditional plume expectations. Variations in slab sinking style and plume position lead to a range in head and conduit melting signatures, as well as migrating hotspots. For the Samoa-Tonga system, model predictions are consistent with proposed entrainment of plume material around the subducting plate

    Directions of seismic anisotropy in laboratory models of mantle plumes

    No full text
    A recent expansion in global seismic anisotropy data provides important new insights about the style of mantle convection. Interpretations of these geophysical measurements rely on complex relationships between mineral physics, seismology, and mantle dynamics. We report on 3-D laboratory experiments using finite strain markers evolving in time-dependent, viscous flow fields to quantify the range in expected anisotropy patterns within buoyant plumes surfacing in a variety of tectonic settings. A surprising result is that laboratory proxies for the olivine fast axis overwhelmingly align tangential to radial outflow in plumes well before reaching the surface. These remarkably robust, and ancient, anisotropy patterns evolve differently in stagnant, translational, and divergent plate tectonic settings and are essentially orthogonal to patterns typically referenced when prospecting for plume signals in seismic data. Results suggest a fundamental change in the mineral physics-seismology-circulation relationship used in accepting or rejecting a plume model. © 2013. American Geophysical Union. All Rights Reserved

    ACCESS datasets for CMIP6: methodology and idealised experiments

    No full text
    The Australian Community Climate and Earth System Simulator (ACCESS) has contributed to the World Climate Research Programme’s Coupled Model Intercomparison Project Phase 6 (CMIP6) using two fully coupled model versions (ACCESS-CM2 and ACCESS-ESM1.5) and two ocean–sea-ice model versions (1° and 0.25° resolution versions of ACCESS-OM2). The fully coupled models differ primarily in the configuration and version of their atmosphere components (including the aerosol scheme), with smaller differences in their sea-ice and land model versions. Additionally, ACCESS-ESM1.5 includes biogeochemistry in the land and ocean components and can be run with an interactive carbon cycle. CMIP6 comprises core experiments and associated thematic Model Intercomparison Projects (MIPs). This paper provides an overview of the CMIP6 submission, including the methods used for the preparation of input forcing datasets and the post-processing of model output, along with a comprehensive list of experiments performed, detailing their initialisation, duration, ensemble number and computational cost. A small selection of model output is presented, focusing on idealised experiments and their variants at global scale. Differences in the climate simulation of the two coupled models are highlighted. ACCESS-CM2 produces a larger equilibrium climate sensitivity (4.7°C) than ACCESS-ESM1.5 (3.9°C), likely a result of updated atmospheric parameterisation in recent versions of the atmospheric component of ACCESS-CM2. The idealised experiments run with ACCESS-ESM1.5 show that land and ocean carbon fluxes respond to both changing atmospheric CO2 and to changing temperature. ACCESS data submitted to CMIP6 are available from the Earth System Grid Federation (https://doi.org/10.22033/ESGF/CMIP6.2281 and https://doi.org/10.22033/ESGF/CMIP6.2288). The information provided in this paper should facilitate easier use of these significant datasets by the broader climate community

    Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow

    No full text
    The causes of volcanism in the northwestern United States over the past 20 million years are strongly contested. Three drivers have been proposed: melting associated with plate subduction; tectonic extension and magmatism resulting from rollback of a subducting slab; or the Yellowstone mantle plume. Observations of the opposing age progression of two neighbouring volcanic chains - the Snake River Plain and High Lava Plains - are often used to argue against a plume origin for the volcanism. Plumes are likely to occur near subduction zones, yet the influence of subduction on the surface expression of mantle plumes is poorly understood. Here we use experiments with a laboratory model to show that the patterns of volcanism in the northwestern United States can be explained by a plume upwelling through mantle that circulates in the wedge beneath a subduction zone. We find that the buoyant plume may be stalled, deformed and partially torn apart by mantle flow induced by the subducting plate. Using plausible model parameters, bifurcation of the plume can reproduce the primary volcanic features observed in the northwestern United States, in particular the opposite progression of two volcanic chains. Our results support the presence of the Yellowstone plume in the northwestern United States, and also highlight the power of plume-subduction interactions to modify surface geology at convergent plate margins

    Plume Subduction Beneath the Neuquén Basin and the Last Mountain Building Stage of the Southern Central Andes

    No full text
    The occurrence of a Neogene shallow subduction stage, as well as, a Pliocene slab-tearing, and steepening of the Nazca plate in the southern Central Andes are well established. However, a satisfactory explanation for the origin and connection between these complex processes is still elusive. In this contribution, we revise the late Cenozoic tectonic and magmatic evolution of the southern Central Andes between 35° and 38° S and discuss different proposals for the Miocene slab shallowing and its Pliocene destabilization. Recent plate kinematic reconstructions show that Neogene arc-front expansion linked to slab shallowing, fold belt reactivation in the main cordillera and intraplate contraction in the San Rafael Block correlates with the subduction of the ancient Payenia plume, a deep mantle anomaly potentially rooted in the lower mantle. Also, the Nazca slab tear determined from tomographic analyses and subsequent slab steepening may also be a direct consequence of this plume subduction process. Considering the westward drift of South America and the presence of several neighbor hotspots over the Nazca plate, the Payenia plume overriding could be the first of future episodes of plume?trench interaction in the Andes.Fil: Gianni, Guido Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Pesce, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: García, Luciano Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Lupari, Marianela Nadia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Correa Otto, Sebastian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Nacif Suvire, Silvina Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Folguera Telichevsky, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentin

    Effect of hydrolyzed infant formula vs conventional formula on risk of type 1 diabetes the TRIGR randomized clinical trial

    No full text
    IMPORTANCE Early exposure to complex dietary proteins may increase the risk of type 117 diabetes in children with genetic disease susceptibility. There are no intact proteins in extensively hydrolyzed formulas. OBJECTIVE To test the hypothesis that weaning to an extensively hydrolyzed formula decreases the cumulative incidence of type 117 diabetes in young children. DESIGN, SETTING, AND PARTICIPANTS An international double-blind randomized clinical trial of 211759 infants with human leukocyte antigen-conferred disease susceptibility and a first-degree relative with type 117 diabetes recruited from May 2002 to January 2007 in 78 study centers in 1175 countries; 11708117 were randomized to be weaned to the extensively hydrolyzed casein formula and 117078 to a conventional formula. The follow-up of the participants ended on February 28, 201177. INTERVENTIONS The participants received either a casein hydrolysate or a conventional adapted cow's milk formula supplemented with 20%of the casein hydrolysate. The minimum duration ofstudy formula exposure was 60 days by6 to 8 months ofage. MAINOUTCOMES ANDMEASURES Primary outcome was type 117 diabetes diagnosed according to World Health Organization criteria. Secondary outcomes included age at diabetes diagnosis and safety (adverse events). RESULTS Among 211759 newborn infants (11702117 female [47.3%]) who were randomized, 117744 (80.8%) completed the trial. The participants were observed for a median of 117117.5 years (quartile [Q] 117-Q3, 1170.2-1172.8). The absolute risk of type 117 diabetes was 8.4% among those randomized tothe casein hydrolysate (n = 9117) vs 7.6% among those randomized to the conventional formula (n = 82) (difference, 0.8% [95% CI, -117.6% to 3.2%]). The hazard ratio for type 117 diabetes adjusted for human leukocyte antigen risk group, duration of breastfeeding, duration of study formula consumption, sex, and region while treating study center as a random effect was 117.117 (95% CI, 0.8 to 117.5; P =.46). The median age at diagnosis of type 117 diabetes was similar in the 2 groups (6.0 years [Q117-Q3, 3.117-8.9] vs 5.8 years [Q117-Q3, 2.6-9.117]; difference, 0.2 years [95% CI, -0.9 to 117.2]). Upper respiratory infections were the most common adverse event reported (frequency, 0.48 events/year in the hydrolysate group and 0.50 events/year in the control group). CONCLUSIONS AND RELEVANCE Among infants at risk for type 117 diabetes, weaning to a hydrolyzed formula compared with a conventional formula did not reduce the cumulative incidence of type 117 diabetes after median follow-up for 117117.5 years. These findings do not support a need to revise the dietary recommendations for infants at risk for type 117 diabetes
    corecore