7 research outputs found

    Toxicological safety evaluation of pasteurizedAkkermansia muciniphila

    Get PDF
    Gut microorganisms are vital for many aspects of human health, and the commensal bacteriumAkkermansia muciniphilahas repeatedly been identified as a key component of intestinal microbiota. Reductions inA. muciniphilaabundance are associated with increased prevalence of metabolic disorders such as obesity and type 2 diabetes. It was recently discovered that administration ofA. muciniphilahas beneficial effects and that these are not diminished, but rather enhanced after pasteurization. PasteurizedA. muciniphilais proposed for use as a food ingredient, and was therefore subjected to a nonclinical safety assessment, comprising genotoxicity assays (bacterial reverse mutation and in vitro mammalian cell micronucleus tests) and a 90-day toxicity study. For the latter, Han Wistar rats were administered with the vehicle or pasteurizedA. muciniphilaat doses of 75, 375 or 1500 mg/kg body weight/day (equivalent to 4.8 x 10(9), 2.4 x 10(10), or 9.6 x 10(10)A. muciniphilacells/kg body weight/day) by oral gavage for 90 consecutive days. The study assessed potential effects on clinical observations (including detailed arena observations and a modified Irwin test), body weight, food and water consumption, clinical pathology, organ weights, and macroscopic and microscopic pathology. The results of both in vitro genotoxicity studies were negative. No test item-related adverse effects were observed in the 90-day study; therefore, 1500 mg/kg body weight/day (the highest dose tested, equivalent to 9.6 x 10(10)A. muciniphilacells/kg body weight/day) was established as the no-observed-adverse-effect-level. These results support that pasteurizedA. muciniphilais safe for use as a food ingredient.Peer reviewe

    Camu-Camu Reduces Obesity and Improves Diabetic Profiles of Obese and Diabetic Mice : A Dose-Ranging Study

    Get PDF
    Overweight, obesity, and their comorbidities are currently considered a major public health concern. Today considerable efforts are still needed to develop efficient strategies able to attenuate the burden of these diseases. Nutritional interventions, some with plant extracts, present promising health benefits. In this study, we evaluated the action of Camu-Camu (Myrciaria dubia), an Amazonian fruit rich in polyphenols and vitamin C, on the prevention of obesity and associated disorders in mice and the abundance of Akkermansia muciniphila in both cecum and feces. Methods: We investigated the dose-response effects of Camu-Camu extract (CCE) in the context of high-fat-diet (HFD)-induced obesity. After 5 weeks of supplementation, we demonstrated that the two doses of CCE differently improved glucose and lipid homeostasis. The lowest CCE dose (62.5 mg/kg) preferentially decreased non-HDL cholesterol and free fatty acids (FFA) and increased the abundance of A. muciniphila without affecting liver metabolism, while only the highest dose of CCE (200 mg/kg) prevented excessive body weight gain, fat mass gain, and hepatic steatosis. Both doses decreased fasting hyperglycemia induced by HFD. In conclusion, the use of plant extracts, and particularly CCE, may represent an additional option in the support of weight management strategies and glucose homeostasis alteration by mechanisms likely independent from the modulation of A. muciniphila abundance.Peer reviewe

    Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome

    Get PDF
    Reduction of A. muciniphila relative abundance in the gut microbiota is a widely accepted signature associated with obesity-related metabolic disorders. Using untargeted metabolomics profiling of fasting plasma, our study aimed at identifying metabolic signatures associated with beneficial properties of alive and pasteurized A. muciniphila when administrated to a cohort of insulin-resistant individuals with metabolic syndrome. Our data highlighted either shared or specific alterations in the metabolome according to the form of A. muciniphila administered with respect to a control group. Common responses encompassed modulation of amino acid metabolism, characterized by reduced levels of arginine and alanine, alongside several intermediates of tyrosine, phenylalanine, tryptophan, and glutathione metabolism. The global increase in levels of acylcarnitines together with specific modulation of acetoacetate also suggested induction of ketogenesis through enhanced beta-oxidation. Moreover, our data pinpointed some metabolites of interest considering their emergence as substantial compounds pertaining to health and diseases in the more recent literature.Peer reviewe

    Pasteurized Akkermansia muciniphila improves glucose metabolism is linked with increased hypothalamic nitric oxide release

    No full text
    Background and objective: Pasteurized Akkermansia muciniphila cells have shown anti-diabetic effects in rodents and human. Although, its primary site of action consists in maintaining the gut barrier function, there are no study exploring if A. muciniphila controls glycemia via a gut to brain axis. Targeting the gut motility represents an alternative pathway to treat hyperglycemia. Here, we tested the impact of pasteurized A. muciniphila on gut motility, gut-brain axis and glucose metabolism.Methods: We used mice fed a 45% high-fat (HFD) treated or not with pasteurized A. muciniphila MucT during 12 weeks. We measured the effects of the treatment on body weight gain, glucose metabolism (insulin, glycemia, glucose tolerance), gut contraction and enteric neurotransmitter release, and hypothalamic nitric oxide (NO) release.Results: We show that pasteurized A. muciniphila exerts positive effects on different metabolic parameters such as body weight, fat mass, insulin, glycemia and glucose tolerance. This could be explained by the ability of pasteurized A. muciniphila supplementation to decrease duodenal contraction and to increase hypothalamic NO release in HFD mice.Conclusion: We demonstrate a novel mode of action of pasteurized A. muciniphila explaining its beneficial impact on the control of glycemia in a preclinical model of type 2 diabetes via gut-brain axis signaling.Peer reviewe

    Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study

    No full text
    Metabolic syndrome is characterized by a constellation of comorbidities that predispose individuals to an increased risk of developing cardiovascular pathologies as well as type 2 diabetes mellitus1. The gut microbiota is a new key contributor involved in the onset of obesity-related disorders2. In humans, studies have provided evidence for a negative correlation between Akkermansia muciniphila abundance and overweight, obesity, untreated type 2 diabetes mellitus or hypertension3-8. Since the administration of A. muciniphila has never been investigated in humans, we conducted a randomized, double-blind, placebo-controlled pilot study in overweight/obese insulin-resistant volunteers; 40 were enrolled and 32 completed the trial. The primary end points were safety, tolerability and metabolic parameters (that is, insulin resistance, circulating lipids, visceral adiposity and body mass). Secondary outcomes were gut barrier function (that is, plasma lipopolysaccharides) and gut microbiota composition. In this single-center study, we demonstrated that daily oral supplementation of 1010 A. muciniphila bacteria either live or pasteurized for three months was safe and well tolerated. Compared to placebo, pasteurized A. muciniphila improved insulin sensitivity (+28.62 ± 7.02%, P = 0.002), and reduced insulinemia (-34.08 ± 7.12%, P = 0.006) and plasma total cholesterol (-8.68 ± 2.38%, P = 0.02). Pasteurized A. muciniphila supplementation slightly decreased body weight (-2.27 ± 0.92 kg, P = 0.091) compared to the placebo group, and fat mass (-1.37 ± 0.82 kg, P = 0.092) and hip circumference (-2.63 ± 1.14 cm, P = 0.091) compared to baseline. After three months of supplementation, A. muciniphila reduced the levels of the relevant blood markers for liver dysfunction and inflammation while the overall gut microbiome structure was unaffected. In conclusion, this proof-of-concept study (clinical trial no. NCT02637115 ) shows that the intervention was safe and well tolerated and that supplementation with A. muciniphila improves several metabolic parameters.status: publishe
    corecore