4 research outputs found
Thrombolyse dâun AVC ischĂ©mique vertĂ©bro-basilaire Ă NâDjamena, RĂ©publique du Tchad
Lâaccident vasculaire cĂ©rĂ©bral ischĂ©mique est une pathologie rare chez les militaires français, mais les mĂ©decins militaires projetĂ©s en opĂ©rations extĂ©rieures peuvent ĂȘtre amenĂ©s Ă en prendre en charge, notamment en Afrique Sub-Saharienne. DĂšs lors, il sâagit dâune urgence vitale nĂ©cessitant de rĂ©agir rapidement avec des moyens limitĂ©s, de façon multidisciplinaire avec les mĂ©decins neurologues de France mĂ©tropolitaine, afin dâassurer au patient une prise en charge optimale. Nous rapportons le cas dâun patient victime dâun accident vasculaire cĂ©rĂ©bral ischĂ©mique sur le territoire vertĂ©bro-basilaire, traitĂ© par thrombolyse intraveineuse
Innovative multidimensional gait evaluation using IMU in multiple sclerosis: introducing the semiogram
BackgroundQuantifying gait using inertial measurement units has gained increasing interest in recent years. Highly degraded gaits, especially in neurological impaired patients, challenge gait detection algorithms and require specific segmentation and analysis tools. Thus, the outcomes of these devices must be rigorously tested for both robustness and relevancy in order to recommend their routine use. In this study, we propose a multidimensional score to quantify and visualize gait, which can be used in neurological routine follow-up. We assessed the reliability and clinical coherence of this method in a group of severely disabled patients with progressive multiple sclerosis (pMS), who display highly degraded gait patterns, as well as in an age-matched healthy subjects (HS) group.MethodsTwenty-two participants with pMS and nineteen HS were included in this 18-month longitudinal follow-up study. During the follow-up period, all participants completed a 10-meter walk test with a U-turn and back, twice at M0, M6, M12, and M18. Average speed and seven clinical criteria (sturdiness, springiness, steadiness, stability, smoothness, synchronization, and symmetry) were evaluated using 17 gait parameters selected from the literature. The variation of these parameters from HS values was combined to generate a multidimensional visual tool, referred to as a semiogram.ResultsFor both cohorts, all criteria showed moderate to very high testâretest reliability for intra-session measurements. Inter-session quantification was also moderate to highly reliable for all criteria except smoothness, which was not reliable for HS participants. All partial scores, except for the stability score, differed between the two populations. All partial scores were correlated with an objective but not subjective quantification of gait severity in the pMS population. A deficit in the pyramidal tract was associated with altered scores in all criteria, whereas deficits in cerebellar, sensitive, bulbar, and cognitive deficits were associated with decreased scores in only a subset of gait criteria.ConclusionsThe proposed multidimensional gait quantification represents an innovative approach to monitoring gait disorders. It provides a reliable and informative biomarker for assessing the severity of gait impairments in individuals with pMS. Additionally, it holds the potential for discriminating between various underlying causes of gait alterations in pMS
Evolution of Codon Usage In The Smallest Photosynthetic Eukaryotes And Their Giant Viruses
Prasinoviruses are among the largest viruses (>200 kbp) and encode several hundreds of protein coding genes, including most genes of the DNA replication machinery and several genes involved in transcription and translation, as well as tRNAs. They can infect and lyse small eukaryotic planktonic marine green algae, thereby affecting global algal population dynamics. Here we investigate the causes of codon usage bias in one prasinovirus, OtV5, and its host Ostreococcus tauri, during a viral infection using microarray expression data. We show that (i) codon usage bias in the host and in the viral genes increases with expression levels and (ii) optimal codons use those tRNAs encoded by the most abundant host tRNA genes, supporting the notion of translational optimization by natural selection. We find evidence that viral tRNA genes complement the host tRNA pool for those viral amino acids whose host tRNAs are in short supply. We further discuss the coevolution of Codon usage bias in hosts and prasinoviruses by comparing optimal codons in 3 evolutionary
Diverged host--âvirus specific pairs whose complete genome sequences are known
Data_Sheet_1_Innovative multidimensional gait evaluation using IMU in multiple sclerosis: introducing the semiogram.PDF
BackgroundQuantifying gait using inertial measurement units has gained increasing interest in recent years. Highly degraded gaits, especially in neurological impaired patients, challenge gait detection algorithms and require specific segmentation and analysis tools. Thus, the outcomes of these devices must be rigorously tested for both robustness and relevancy in order to recommend their routine use. In this study, we propose a multidimensional score to quantify and visualize gait, which can be used in neurological routine follow-up. We assessed the reliability and clinical coherence of this method in a group of severely disabled patients with progressive multiple sclerosis (pMS), who display highly degraded gait patterns, as well as in an age-matched healthy subjects (HS) group.MethodsTwenty-two participants with pMS and nineteen HS were included in this 18-month longitudinal follow-up study. During the follow-up period, all participants completed a 10-meter walk test with a U-turn and back, twice at M0, M6, M12, and M18. Average speed and seven clinical criteria (sturdiness, springiness, steadiness, stability, smoothness, synchronization, and symmetry) were evaluated using 17 gait parameters selected from the literature. The variation of these parameters from HS values was combined to generate a multidimensional visual tool, referred to as a semiogram.ResultsFor both cohorts, all criteria showed moderate to very high testâretest reliability for intra-session measurements. Inter-session quantification was also moderate to highly reliable for all criteria except smoothness, which was not reliable for HS participants. All partial scores, except for the stability score, differed between the two populations. All partial scores were correlated with an objective but not subjective quantification of gait severity in the pMS population. A deficit in the pyramidal tract was associated with altered scores in all criteria, whereas deficits in cerebellar, sensitive, bulbar, and cognitive deficits were associated with decreased scores in only a subset of gait criteria.ConclusionsThe proposed multidimensional gait quantification represents an innovative approach to monitoring gait disorders. It provides a reliable and informative biomarker for assessing the severity of gait impairments in individuals with pMS. Additionally, it holds the potential for discriminating between various underlying causes of gait alterations in pMS.</p