3 research outputs found

    Tunable Wire Metamaterials for an Axion Haloscope

    Full text link
    Metamaterials based on regular two-dimensional arrays of thin wires have attracted renewed attention in light of a recently proposed strategy to search for dark matter axions. When placed in the external magnetic field, such metamaterials facilitate resonant conversion of axions into plasmons near their plasma frequency. Since the axion mass is not known a priori, a practical way to tune the plasma frequency of metamaterial is required. In this work, we have studied a system of two interpenetrating rectangular wire lattices where their relative position is varied. The plasma frequency as a function of their relative position in two dimensions has been mapped out experimentally, and compared with both a semi-analytic theory of wire-array metamaterials and numerical simulations. Theory and simulation yield essentially identical results, which in turn are in excellent agreement with experimental data. Over the range of translations studied, the plasma frequency can be tuned over a range of 16%

    Searching For Dark Matter with Plasma Haloscopes

    Full text link
    We summarise the recent progress of the Axion Longitudinal Plasma HAloscope (ALPHA) Consortium, a new experimental collaboration to build a plasma haloscope to search for axions and dark photons. The plasma haloscope is a novel method for the detection of the resonant conversion of light dark matter to photons. ALPHA will be sensitive to QCD axions over almost a decade of parameter space, potentially discovering dark matter and resolving the Strong CP problem. Unlike traditional cavity haloscopes, which are generally limited in volume by the Compton wavelength of the dark matter, plasma haloscopes use a wire metamaterial to create a tuneable artificial plasma frequency, decoupling the wavelength of light from the Compton wavelength and allowing for much stronger signals. We develop the theoretical foundations of plasma haloscopes and discuss recent experimental progress. Finally, we outline a baseline design for ALPHA and show that a full-scale experiment could discover QCD axions over almost a decade of parameter space.Comment: Endorsers: Jens Dilling, Michael Febbraro, Stefan Knirck, and Claire Marvinney. 26 pages, 17 figures, version accepted in Physical Review
    corecore