28 research outputs found

    On modeling airborne infection risk

    Full text link
    Airborne infection risk analysis is usually performed for enclosed spaces where susceptible individuals are exposed to infectious airborne respiratory droplets by inhalation. It is usually based on exponential, dose-response models of which a widely used variant is the Wells-Riley (WR) model. We employ a population-based Susceptible-Exposed-Droplet-Infected-Recovered (SEDIR) model to revisit the infection-risk estimate at the population level during an epidemic. We demonstrate the link between epidemiological models and the WR model, including its Gammaitoni-Nucci (GN) generalization. This connection shows how infection quanta are related to the number of infectious airborne droplets. For long latent periods, the SEDIR model reduces to the GN model with parameters that depend on biological properties of the pathogen (size-dependent pathogen droplet concentration, infection probability of a deposited infectious droplet), physical droplet properties (lung-deposition probability), and individual behavioral properties (exposure time). In two scenarios we calculate the probability of infection during the epidemic. The WR and GN limits of the SEDIR model reproduce accurately the SEDIR-calculated infection risk.Comment: 14 pages, 3 figure

    On the friction coefficient of straight-chain aggregates

    Full text link
    A methodology to calculate the friction coefficient of an aggregate in the continuum regime is proposed. The friction coefficient and the monomer shielding factors, aggregate-average or individual, are related to the molecule-aggregate collision rate that is obtained from the molecular diffusion equation with an absorbing boundary condition on the aggregate surface. Calculated friction coefficients of straight chains are in very good agreement with previous results, suggesting that the friction coefficients may be accurately calculated from the product of the collision rate and an average momentum transfer,the latter being independent of aggregate morphology. Langevin-dynamics simulations show that the diffusive motion of straight-chain aggregates may be described either by a monomer-dependent or an aggregate-average random force, if the shielding factors are appropriately chosen.Comment: 22 pages, 6 figures, revised version. To appear in the Journal of Colloid and Interface Scienc

    Lockdown Measures and their Impact on Single- and Two-age-structured Epidemic Model for the COVID-19 Outbreak in Mexico

    Get PDF
    The role of lockdown measures in mitigating COVID-19 in Mexico is investigated using a comprehensive nonlinear ODE model. The model includes both asymptomatic and presymptomatic populations with the latter leading to sickness (with recovery, hospitalization and death possibilities). We consider the situation involving the imposed application of partial social distancing measures in the time series of interest and find optimal parametric fits to the time series of deaths (only), as well as to that of deaths and cumulative infections. We discuss the merits and disadvantages of each approach, we interpret the parameters of the model and assess the realistic nature of the parameters resulting from the optimization procedure. Importantly, we explore a model involving two sub-populations (younger and older than a specific age), to more accurately reflect the observed impact as concerns symptoms and behavior in different age groups. For definitiveness and to separate people that are (typically) in the active workforce, our partition of population is with respect to members younger vs. older than the age of 65. The basic reproductive number of the model is computed for both the single- and the two-population variant. Finally, we consider what would be the impact on the number of deaths and cumulative infections upon imposition of partial lockdown (involving only the older population) and full lockdown (involving the entire population)

    Number Concentrations and Modal Structure of Indoor/Outdoor Fine Particles in Four European Cities

    Get PDF
    Indoor/outdoor aerosol size distribution was measured in four European cities (Oslo-Norway, Prague-Czech Republic, Milan-Italy and Athens-Greece) during 2002 in order to examine the differences in the characteristics of the indoor/outdoor modal structure and to evaluate the effect of indoor sources to the aerosol size distributions. All the measurement sites were naturally ventilated and were occupied during the campaigns by permanent residents or for certain time periods by the technical staff responsible for the instrumentation. Outdoor particle number (PN) concentrations presented the higher values in Milan and Athens (median values 1.4 x 10(4) # cm(-3) and 2.9 x 10(4) # cm(-3) respectively) as a result of elevated outdoor emissions and led to correspondingly higher indoor values compared to Oslo and Prague. In absence of indoor activities, the indoor concentrations followed the fluctuations of the outdoor concentrations in all the measurement sites. Indoor activities (cooking, smoking, etc.) resulted in elevated indoor PN concentrations (maximum values ranging between 1.7 x 10(5) # cm(-3) and 3.2 x 10(5) # cm(-3)) and to I/O ratios higher than one. The I/O ratios were size dependant and for periods without indoor activities, they presented the lowest values for particles <50 nm (0.51 +/- 0.15) and the ratios increased with fine particle size (0.79 +/- 0.12 for particles between 100-200 nm). The analysis of the modal structure showed that the indoor aerosol size distribution characteristics differ from the outdoors under the effect of indoor sources. The percentage of unimodal size distributions increased during indoor emissions, compared to periods without indoor sources, along with the number concentration of Aitken mode particles, indicating emissions in specific size ranges according to the type of the indoor source.Peer reviewe

    Dynamics of infectious disease transmission by inhalable respiratory droplets

    No full text
    Transmission of respiratory infectious diseases in humans, for instance influenza, occurs by several modes. Respiratory droplets provide a vector of transmission of an infectious pathogen that may contribute to different transmission modes. An epidemiological model incorporating the dynamics of inhalable respiratory droplets is developed to assess their relevance in the infectious process. Inhalable respiratory droplets are divided into respirable droplets, with droplet diameter less than 10 µm, and inspirable droplets, with diameter in the range 10–100 µm: both droplet classes may be inhaled or settle. Droplet dynamics is determined by their physical properties (size), whereas population dynamics is determined by, among other parameters, the pathogen infectivity and the host contact rates. Three model influenza epidemic scenarios, mediated by different airborne or settled droplet classes, are analysed. The scenarios are distinguished by the characteristic times associated with breathing at contact and with hand-to-face contact. The scenarios suggest that airborne transmission, mediated by respirable droplets, provides the dominant transmission mode in middle and long-term epidemics, whereas inspirable droplets, be they airborne or settled, characterize short-term epidemics with high attack rates. The model neglects close-contact transmission by droplet sprays (direct projection onto facial mucous membranes), retaining close-contact transmission by inspirable droplets
    corecore