8 research outputs found
Energy transfer in aggregated CuInS2/ZnS core-shell quantum dots deposited as solid films
We report on the morphology and optical properties of CuInS2/ZnS core-shell quantum dots in solid films by means of AFM, SEM, HRTEM, steady state and time-resolved photoluminescence (PL) spectroscopy. The amount of aggregation of the CuInS2/ZnS QDs was controlled by changing the preparation conditions of the films. A red-shift of the PL spectrum of CuInS2/ZnS core-shell quantum dots, deposited as solid films on silicon substrates, is observed upon increasing the amount of aggregation. The presence of larger aggregates was found to lead to a larger PL red-shift. Besides, as the degree of aggregation increased, the PL decay became slower. We attribute the observed PL red-shift to energy transfer from the smaller to the larger dots within the aggregates, with the emission being realized via a long decay recombination mechanism (100-200 ns), the origin of which is discussed. © 2016 IOP Publishing Ltd
Energy transfer in aggregated CuInS<sub>2</sub>/ZnS core-shell quantum dots deposited as solid films
We report on the morphology and optical properties of CuInS2/ZnS core-shell quantum dots in solid films by means of AFM, SEM, HRTEM, steady state and time-resolved photoluminescence (PL) spectroscopy. The amount of aggregation of the CuInS2/ZnS QDs was controlled by changing the preparation conditions of the films. A red-shift of the PL spectrum of CuInS2/ZnS core-shell quantum dots, deposited as solid films on silicon substrates, is observed upon increasing the amount of aggregation. The presence of larger aggregates was found to lead to a larger PL red-shift. Besides, as the degree of aggregation increased, the PL decay became slower. We attribute the observed PL red-shift to energy transfer from the smaller to the larger dots within the aggregates, with the emission being realized via a long decay recombination mechanism (100-200 ns), the origin of which is discussed.</p
Comparing the excited-state properties of a mixed-cation-mixed-halide perovskite to methylammonium lead iodide
Organic-inorganic perovskites are one of the most promising photovoltaic materials for the design of next generation solar cells. The lead-based perovskite prepared with methylammonium and iodide was the first in demonstrating high power conversion efficiency, and it remains one of the most used materials today. However, perovskites prepared by mixing several halides and several cations systematically yield higher efficiencies than "pure" methylammonium lead iodide (MAPbI3) devices. In this work, we unravel the excited-state properties of a mixed-halide (iodide and bromide) and mixed-cation (methylammonium and formamidinium) perovskite. Combining time-resolved photoluminescence, transient absorption, and optical-pump-terahertz-probe experiments with density functional theory calculations, we show that the population of higher-lying excited states in the mixed material increases the lifetime of photogenerated charge carriers upon well above-bandgap excitation. We suggest that alloying different halides and different cations reduces the structural symmetry of the perovskite, which partly releases the selection rules to populate the higher-energy states upon light absorption. Our investigation thus shows that mixed halide perovskites should be considered as an electronically different material than MAPbI3, paving the way toward further materials optimization and improved power conversion efficiency of perovskite solar cells