34 research outputs found

    The Endosymbiotic Coral Algae Symbiodiniaceae Are Sensitive to a Sensory Pollutant: Artificial Light at Night, ALAN

    Get PDF
    Artificial Light at Night, ALAN, is a major emerging issue in biodiversity conservation, which can negatively impact both terrestrial and marine environments. Therefore, it should be taken into serious consideration in strategic planning for urban development. While the lion’s share of research has dealt with terrestrial organisms, only a handful of studies have focused on the marine milieu. To determine if ALAN impacts the coral reef symbiotic algae, that are fundamental for sustainable coral reefs, we conducted a short experiment over a period of one-month by illuminating isolated Symbiodiniaceae cell cultures from the genera Cladocopium (formerly Clade C) and Durusdinium (formerly Clade D) with LED light. Cell cultures were exposed nightly to ALAN levels of 0.15 μmol quanta m–2 s–1 (∼4–5 lux) with three light spectra: blue, yellow and white. Our findings showed that even in very low levels of light at night, the photo-physiology of the algae’s Electron Transport Rate (ETR), Non-Photochemical Quenching, (NPQ), total chlorophyll, and meiotic index presented significantly lower values under ALAN, primarily, but not exclusively, in Cladocopium cell cultures. The findings also showed that diverse Symbiodiniaceae types have different photo-physiology and photosynthesis performances under ALAN. We believe that our results sound an alarm for the probable detrimental effects of an increasing sensory pollutant, ALAN, on the eco-physiology of symbiotic corals. The results of this study point to the potential effects of ALAN on other organisms in marine ecosystem such as fish, zooplankton, and phytoplankton in which their biorhythms is entrained by natural light and dark cycles

    Investigation of the Degradation Behavior of Cyclophosphamide by Catalytic Ozonation Based on Mg(OH)2

    No full text
    Metal hydroxides, owing to their catalytic active sites for the decomposition of O3 to Reactive Oxygen Species (ROS), have been adapted for catalytic ozonation of micropollutants in wastewater. In this study, commercial Mg (OH)2 was used for the degradation of cyclophosphamide (CYP) by ozone. The crystal phase was confirmed by X-ray powder Diffraction (XRD). Percent degradation of 10 ppm CYP after 30 min by O3 and Mg (OH)2/O3 was 56 and 93, respectively, suggesting enhanced decomposition of O3 to ROS by the catalyst. The presence of ROS was further confirmed using pCBA as a probe, which showed that the concentration of ROS was eight times higher in the presence of Mg (OH)2/O3 than O3 alone. Catalytic ozonation experiments in the presence of scavengers showed that OH· radicals play a significant role in the degradation of CYP. The catalyst was found to be reusable for at least three cycles without significant loss in degradation efficiency. To study the compatibility of Mg (OH)2 for wastewater treatment applications, synthetic effluent was spiked with CYP and subjected to ozonation by Mg(OH)2/O3. The TOC of CYP before and after the treatment showed that Mg (OH)2/O3 not only degrades CYP but also mineralizes to a certain extent unlike O3 alone

    Pharmaceutical Transformation Products Formed by Ozonation—Does Degradation Occur?

    No full text
    The efficiency of an advanced oxidation process (AOP) using direct and indirect ozonation for the removal of pharmaceutical residues from deliberately spiked deionized water was examined. Both direct and indirect ozonation demonstrated 34% to 100% removal of the parent compounds. However, based on the products’ chemical structure and toxicity, we suggest that despite using accepted and affordable ozone and radical concentrations, the six parent compounds were not fully degraded, but merely transformed into 25 new intermediate products. The transformation products (TPs) differed slightly in structure but were mostly similar to their parent compounds in their persistence, stability and toxicity; a few of the TPs were found to be even more toxic than their parent compounds. Therefore, an additional treatment is required to improve and upgrade the traditional AOP toward degradation and removal of both parent compounds and their TPs for safer release into the environment

    Pharmaceutical Transformation Products Formed by Ozonation—Does Degradation Occur?

    No full text
    The efficiency of an advanced oxidation process (AOP) using direct and indirect ozonation for the removal of pharmaceutical residues from deliberately spiked deionized water was examined. Both direct and indirect ozonation demonstrated 34% to 100% removal of the parent compounds. However, based on the products’ chemical structure and toxicity, we suggest that despite using accepted and affordable ozone and radical concentrations, the six parent compounds were not fully degraded, but merely transformed into 25 new intermediate products. The transformation products (TPs) differed slightly in structure but were mostly similar to their parent compounds in their persistence, stability and toxicity; a few of the TPs were found to be even more toxic than their parent compounds. Therefore, an additional treatment is required to improve and upgrade the traditional AOP toward degradation and removal of both parent compounds and their TPs for safer release into the environment

    Trace Organic Compound Removal from Wastewater Reverse-Osmosis Concentrate by Advanced Oxidation Processes with UV/O3/H2O2

    No full text
    Advanced technologies, such as reverse osmosis (RO), allow the reuse of treated wastewater for direct or indirect potable use. However, even highly efficient RO systems produce ~10–15% highly contaminated concentrate as a byproduct. This wastewater RO concentrate (WWROC) is very rich in metal ions, nutrients, and hard-to-degrade trace organic compounds (TOrCs), such as pharmaceuticals, plasticizers, flame retardants, and detergents, which must be treated before disposal. WWROC could be up to 10 times more concentrated than secondary effluent. We examined the efficiency of several advanced oxidation processes (AOPs) on TOrC removal from a two-stage WWROC matrix in a pilot wastewater-treatment facility. WWROC ozonation or UV irradiation, with H2O2 addition, demonstrated efficient removal of TOrCs, varying between 21% and over 99% degradation, and indicating that radical oxidation (by HO·) is the dominant mechanism. However, AOPs are not sufficient to fully treat the WWROC, and thus, additional procedures are required to decrease metal ion and nutrient concentrations. Further biological treatment post-AOP is also highly important, to eliminate the degradable organic molecules obtained from the AOP
    corecore