500 research outputs found
Inflammatory Cytokine Networks in Gastrointestinal Tract Graft vs. Host Disease
Graft vs. host disease (GVHD) is the major non-relapse complication associated with allogeneic hematopoietic stem cell transplantation (HSCT). Damage to the gastrointestinal (GI) tract from acute GVHD is a particularly serious event that can result in significant morbidity and mortality. Proinflammatory cytokines play a critical role in the pathophysiology of intestinal GVHD, in part by activating donor T cell populations which subsequently induce tissue damage. In this review, we summarize pre-clinical data derived from experimental murine models that have examined the role of inflammatory cytokine pathways that play critical roles in the pathophysiology of GVHD of the GI tract. Specific areas of focus are on STAT 3-dependent cytokines (e.g., IL-6, IL-23, and IL-21), and members of the IL-1 cytokine family, both of which have been shown to induce pathological damage within the GI tract during this disease. We also review established and ongoing efforts to translate these pre-clinical findings into the clinic in an effort to reduce morbidity and mortality due to this complication
Successful unrelated marrow transplantation for patients over the age of 40 with chronic myelogenous leukemia
AbstractSome older patients (> or =40 years) with chronic myelogenous leukemia (CML) who lack human leukocyte antigen (HLA)-identical sibling donors are not offered unrelated marrow transplantation because of concerns over excessive regimen-related toxicity, in particular due to graft-vs.-host disease (GVHD). The purpose of this study was to determine the efficacy and toxicity of unrelated marrow transplantation in older CML patients using a regimen designed to minimize the severity of GVHD. Thirty-one consecutive patients over the age of 40 with CML received unrelated marrow transplants between January 1988 and June 1997. Twenty-one patients were transplanted in chronic phase while ten were transplanted in the accelerated phase of their disease. Fifteen patients received transplants from phenotypically matched donors while 16 received marrow grafts from donors who were mismatched at one HLA locus. GVHD prophylaxis consisted of ex vivo T cell depletion of the donor marrow graft plus posttransplant cyclosporine administration. Durable engraftment was achieved in 29 of 31 patients (94%). The probability of developing grades II-IV or severe grades III-IV acute GVHD was 39.2 and 7.1%, respectively. There was no difference in the incidence of grades II-IV acute GVHD between patients transplanted with marrow grafts from phenotypically matched (38.1%) vs. those transplanted from mismatched unrelated donors (40%, p = 0.99). The 2-year probability of relapse for the entire population was 29.4%. Relapse was significantly higher for patients transplanted in accelerated phase (60%) than for those in chronic phase (13.8%, p = 0.027). The 2-year probability of overall survival and disease-free survival for the entire cohort was 56 and 45%, respectively. There was no significant difference in survival or disease-free survival for patients receiving phenotypically matched vs. mismatched marrow grafts. Immunological reconstitution for this cohort was compared with a younger (<40 years) patient population that had been similarly transplanted over the same time period. Immune function as assessed by total T cell, B cell, NK cell, and T cell subset reconstitution posttransplant was quantitatively equivalent in the two groups with most parameters normalizing within 18 months of transplant. We conclude that CML patients over the age of 40 who have either phenotypically matched or one antigen-mismatched unrelated donors can successfully undergo allogeneic marrow transplantation. T cell depletion of the marrow graft may be advantageous in these older patients by reducing GVHD severity, particularly in those patients transplanted with HLA-disparate marrow grafts.Biol Blood Marrow Transplant 1998;4(1):3-12
Development of a sensitive, highly controlled assay for molecular detection of the Philadelphia chromosome in patients with chronic myelogenous leukemia
The Philadelphia chromosome (Ph1), present in [ges]95% of chronic myelogenous leukemia (CML) patients, is a well-characterized translocation that results in a unique chimeric gene product (BCR/ABL) with transforming capability. Molecular methods utilizing the polymerase chain reaction (PCR) to detect BCR/ABL mRNA transcripts has been useful for detecting minimal residual disease (MRD) after treatment, as well as for establishing the diagnosis of CML. Amplification-based assays for the BCR/ABL transcript, however, have shown variable reproducibility and sensitivity. This variability may be largely due to technical differences and insufficient controls. In this report, we describe the development of a highly controlled, reproducible, and sensitive PCR assay to detect Ph1 that is well suited to clinical and research applications. A validation study of 82 samples was performed consisting of 25 dilutions of K562 cells (Ph1+) into normal cultured B cells, 26 pre- and post-transplant peripheral blood samples from CML patients, 16 peripheral blood samples for diagnosis of CML, and 15 peripheral blood samples from healthy individuals. RNA isolated from 3 to 5 million leukocytes was reverse transcribed (RT) and amplified by nested primer PCR. The products were characterized using agarose gel electrophoresis. Approximately 1000 Ph1-positive cells admixed with 106 normal cells were detectable after one round of amplification. In 60% of assays where one Ph1-positive cell was admixed with 106 normal cells, a BCR/ABL product was detectable after nested primer PCR. Specific measures to ensure accurate results in routine testing included (a) assessing RNA integrity and adequate cDNA preparation by detection of the constitutively expressed ABL mRNA, (b) monitoring sensitivity with the addition and detection of K562 RNA mixed with RNA from unknown samples (failure to detect the "spiked" K562 RNA indicates the presence of inhibitors or ribonucleases within the unknown RNA sample), (c) detection of nucleic acid contaminants by using negative controls in every assay, and (d) duplicate analysis of all samples and controls. Internally, this assay was 100% reproducible. Our results verify that nested primer RT-PCR is a fast, sensitive alternative to cytogenetic or Southern blot analysis for monitoring MRD after treatment and for diagnosis of CML. In addition, the highly controlled detection scheme presented here can be used as a general model for the development of other amplification-based detection assays.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31883/1/0000835.pd
An Unusual Case of Spontaneous Remission of Hodgkin's Disease after a Single Cycle of COPP-ABV Chemotherapy Followed by Infectious Complications
Advanced Hodgkin's disease is usually treated with six or more cycles of combination chemotherapy. Spontaneous regression of the cancer is very rarely reported in patients with Hodgkin's disease. We present an unusual case of a patient with Hodgkin's disease who experienced complete remission with a single cycle of chemotherapy, followed by pneumonia. The case was a 36-year-old man diagnosed with stage IVB mixed cellularity Hodgkin's disease in November 2000. After treatment with one cycle of COPP-ABV (cyclophosphamide, vincristine, procarbazine, prednisone, doxorubicin, bleomycin, and vinblastine) chemotherapy without bleomycin, the patient developed interstitial pneumonia and was cared in the intensive care unit (ICU) for two months. Follow-up chest computerized tomography (CT), performed during the course of ICU care, revealed markedly improved mediastinal lymphomatous lesions. Furthermore, follow-up whole body CT and 18-fluorodeoxyglucose positron emission tomography showed complete disappearance of the lymphomatous lesions. Four years later, the patient is well and without relapse. This report is followed by a short review of the literature on spontaneous regression of Hodgkin's disease. To the best of our knowledge, this is the first case report of spontaneous remission of Hodgkin's disease in Korea
Antiviral Responses following L-Leucyl-L-Leucine Methyl Esther (LLME)-Treated Lymphocyte Infusions: Graft-versus-Infection without Graft-versus-Host Disease
Although allogeneic hematopoietic progenitor cell transplant (HPCT) is curative therapy for many disorders, it is associated with significant morbidity and mortality, which can be related to graft-versus-host disease (GVHD) and the immunosuppressive measures required for its prevention and/or treatment. Whether the immunosuppression is pharmacologic or secondary to graft manipulation, the graft recipient is left at increased risk of the threatening opportunistic infection. Refractory viral diseases in the immunocompromised host have been treated by infusion of virus-specific lymphotyces and by unmanipulated donor lymphocyte infusion (DLI) therapy. L-leucyl-L-leucine methyl ester (LLME) is a compound that induces programmed cell death of natural killer (NK) cells, monocytes, granulocytes, most CD8+ T cells, and a small fraction of CD4+ T cells. We have undertaken a study of the use of LLME-treated DLI following T cell-depleted allogeneic HPCT, specifically to aid with immune reconstitution. In this ongoing clinical trial, we have demonstrated the rapid emergence of virus-specific responses following LLME DLI with minimal associated GVHD. This paper examines the pace of immune recovery and the rapid development of antiviral responses in 6 patients who developed viral infections during the time period immediately preceding or coincident with the administration of the LLME DLI
Type 2 cannabinoid receptor expression on microglial cells regulates neuroinflammation during graft-versus-host disease
Neuroinflammation is a recognized complication of immunotherapeutic approaches such as immune checkpoint inhibitor treatment, chimeric antigen receptor therapy, and graft versus host disease (GVHD) occurring after allogeneic hematopoietic stem cell transplantation. While T cells and inflammatory cytokines play a role in this process, the precise interplay between the adaptive and innate arms of the immune system that propagates inflammation in the central nervous system remains incompletely understood. Using a murine model of GVHD, we demonstrate that type 2 cannabinoid receptor (CB2R) signaling plays a critical role in the pathophysiology of neuroinflammation. In these studies, we identify that CB2R expression on microglial cells induces an activated inflammatory phenotype that potentiates the accumulation of donor-derived proinflammatory T cells, regulates chemokine gene regulatory networks, and promotes neuronal cell death. Pharmacological targeting of this receptor with a brain penetrant CB2R inverse agonist/antagonist selectively reduces neuroinflammation without deleteriously affecting systemic GVHD severity. Thus, these findings delineate a therapeutically targetable neuroinflammatory pathway and have implications for the attenuation of neurotoxicity after GVHD and potentially other T cell-based immunotherapeutic approaches
Human leukocyte antigen supertype matching after myeloablative hematopoietic cell transplantation with 7/8 matched unrelated donor allografts: a report from the Center for International Blood and Marrow Transplant Research
The diversity of the human leukocyte antigen (HLA) class I and II alleles can be simplified by consolidating them into fewer supertypes based on functional or predicted structural similarities in epitope-binding grooves of HLA molecules. We studied the impact of matched and mismatched HLA-A (265 versus 429), -B (230 versus 92), -C (365 versus 349), and -DRB1 (153 versus 51) supertypes on clinical outcomes of 1934 patients with acute leukemias or myelodysplasia/myeloproliferative disorders. All patients were reported to the Center for International Blood and Marrow Transplant Research following single-allele mismatched unrelated donor myeloablative conditioning hematopoietic cell transplantation. Single mismatched alleles were categorized into six HLA-A (A01, A01A03, A01A24, A02, A03, A24), six HLA-B (B07, B08, B27, B44, B58, B62), two HLA-C (C1, C2), and five HLA-DRB1 (DR1, DR3, DR4, DR5, DR9) supertypes. Supertype B mismatch was associated with increased risk of grade II-IV acute graft-versus-host disease (hazard ratio =1.78, P=0.0025) compared to supertype B match. Supertype B07-B44 mismatch was associated with a higher incidence of both grade II-IV (hazard ratio=3.11, P=0.002) and III-IV (hazard ratio=3.15, P=0.01) acute graft-versus-host disease. No significant associations were detected between supertype-matched versus -mismatched groups at other HLA loci. These data suggest that avoiding HLA-B supertype mismatches can mitigate the risk of grade II-IV acute graft-versus-host disease in 7/8-mismatched unrelated donor hematopoietic cell transplantation when multiple HLA-B supertype-matched donors are available. Future studies are needed to define the mechanisms by which supertype mismatching affects outcomes after alternative donor hematopoietic cell transplantation
A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease
Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell–mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin–expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non–Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10–regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers
- …