2,887 research outputs found

    Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices

    Get PDF
    The brain should integrate related but not unrelated information from different senses. Temporal patterning of inputs to different modalities may provide critical information about whether those inputs are related or not. We studied effects of temporal correspondence between auditory and visual streams on human brain activity with functional magnetic resonance imaging ( fMRI). Streams of visual flashes with irregularly jittered, arrhythmic timing could appear on right or left, with or without a stream of auditory tones that coincided perfectly when present ( highly unlikely by chance), were noncoincident with vision ( different erratic, arrhythmic pattern with same temporal statistics), or an auditory stream appeared alone. fMRI revealed blood oxygenation level-dependent ( BOLD) increases in multisensory superior temporal sulcus (mSTS), contralateral to a visual stream when coincident with an auditory stream, and BOLD decreases for noncoincidence relative to unisensory baselines. Contralateral primary visual cortex and auditory cortex were also affected by audiovisual temporal correspondence or noncorrespondence, as confirmed in individuals. Connectivity analyses indicated enhanced influence from mSTS on primary sensory areas, rather than vice versa, during audiovisual correspondence. Temporal correspondence between auditory and visual streams affects a network of both multisensory ( mSTS) and sensory-specific areas in humans, including even primary visual and auditory cortex, with stronger responses for corresponding and thus related audiovisual inputs

    Constrained Rough Paths

    No full text

    Object-guided Spatial Attention in Touch: Holding the Same Object with Both Hands Delays Attentional Selection

    Get PDF
    Abstract Previous research has shown that attention to a specific location on a uniform visual object spreads throughout the entire object. Here we demonstrate that, similar to the visual system, spatial attention in touch can be object guided. We measured event-related brain potentials to tactile stimuli arising from objects held by observers' hands, when the hands were placed either near each other or far apart, holding two separate objects, or when they were far apart but holding a common object. Observers covertly oriented their attention to the left, to the right, or to both hands, following bilaterally presented tactile cues indicating likely tactile target location(s). Attentional modulations for tactile stimuli at attended compared to unattended locations were present in the time range of early somatosensory components only when the hands were far apart, but not when they were near. This was found to reflect enhanced somatosensory processing at attended locations rather than suppressed processing at unattended locations. Crucially, holding a common object with both hands delayed attentional selection, similar to when the hands were near. This shows that the proprioceptive distance effect on tactile attentional selection arises when distant event locations can be treated as separate and unconnected sources of tactile stimulation, but not when they form part of the same object. These findings suggest that, similar to visual attention, both space- and object-based attentional mechanisms can operate when we select between tactile events on our body surface.</jats:p

    The ugrizYJHK luminosity distributions and densities from the combined MGC, SDSS and UKIDSS LAS datasets

    Full text link
    We combine data from the MGC, SDSS and UKIDSS LAS surveys to produce ugrizYJHK luminosity functions and densities from within a common, low redshift volume (z<0.1, ~71,000 h_1^-3 Mpc^3 for L* systems) with 100 per cent spectroscopic completeness. In the optical the fitted Schechter functions are comparable in shape to those previously reported values but with higher normalisations (typically 0, 30, 20, 15, 5 per cent higher phi*-values in u, g, r, i, z respectively over those reported by the SDSS team). We attribute these to differences in the redshift ranges probed, incompleteness, and adopted normalisation methods. In the NIR we find significantly different Schechter function parameters (mainly in the M* values) to those previously reported and attribute this to the improvement in the quality of the imaging data over previous studies. This is the first homogeneous measurement of the extragalactic luminosity density which fully samples both the optical and near-IR regimes. Unlike previous compilations that have noted a discontinuity between the optical and near-IR regimes our homogeneous dataset shows a smooth cosmic spectral energy distribution (CSED). After correcting for dust attenuation we compare our CSED to the expected values based on recent constraints on the cosmic star-formation history and the initial mass function.Comment: 17 pages, 13 figures, Accepted in MNRAS: 2010 January 18; in original form 2009 August 1

    A combinatorial approach to geometric rough paths and their controlled paths

    Get PDF
    We develop the structure theory for transformations of weakly geometric rough paths of bounded 1<p1 < p-variation and their controlled paths. Our approach differs from existing approaches as it does not rely on smooth approximations. We derive an explicit combinatorial expression for the rough path lift of a controlled path, and use it to obtain fundamental identities such as the associativity of the rough integral, the adjunction between pushforwards and pullbacks, and a change of variables formula for rough differential equations (RDEs). As applications we define rough paths, rough integration and RDEs on manifolds, extending the results of [CDL15] to the case of arbitrary pp

    Dorsal laminectomy for treatment of cervical vertebral stenotic myelopathy in an alpaca

    Get PDF

    An earth pole-sitter using hybrid propulsion

    Get PDF
    In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    New limits on a cosmological constant from statistics of gravitational lensing

    Get PDF
    We present new limits on cosmological parameters from the statistics of gravitational lensing, based on the recently revised knowledge of the luminosity function and internal dynamics of E/S0 galaxies that are essential in lensing high-redshift QSOs. We find that the lens models using updated Schechter parameters for such galaxies, derived from the recent redshift surveys combined with morphological classification, are found to give smaller lensing probabilities than earlier calculated. Inconsistent adoption of these parameters from a mixture of various galaxy surveys gives rise to systematic biases in the results. We also show that less compact dwarf-type galaxies which largely dominate the faint part of the Schechter-form luminosity function contribute little to lensing probabilities, so that earlier lens models overestimate incidents of small separation lenses. Applications of the lens models to the existing lens surveys indicate that reproduction of both the lensing probability of optical sources and the image separations of optical and radio lenses is significantly improved in the revised lens models. The likelihood analyses allow us to conclude that a flat universe with Omega=0.3(+0.2-0.1) and Omega+Lambda=1 is most preferable, and a matter-dominated flat universe with Lambda=0 is ruled out at 98 % confidence level. These new limits are unaffected by inclusion of uncertainties in the lens properties.Comment: 30 pages, 9 ps figures, AASTeX, ApJ in pres
    corecore