805 research outputs found

    Empowering Catalyst Supports: A New Concept for Catalyst Design Demonstrated in the Fischer–Tropsch Synthesis

    Get PDF
    The Fischer–Tropsch (FT) synthesis is traditionally associated with fossil fuel consumption, but recently this technology has emerged as a keystone that enables the conversion of captured CO2 with sustainable hydrogen to energy-dense fuels and chemicals for sectors which are challenging to be electrified. Iron-based FT catalysts are promoted with alkali and transition metals to improve reducibility, activity, and selectivity. Due to their low concentration and the metastable state under reaction conditions, the exact speciation and location of these promoters remain poorly understood. We now show that the selectivity promoters such as potassium and manganese, locked into an oxidic matrix doubling as a catalyst support, surpass conventional promoting effects. La1–xKxAl1–yMnyO3−δ (x = 0 or 0.1; y = 0, 0.2, 0.6, or 1) perovskite supports yield a 60% increase in CO conversion comparable to conventional promotion but show reduced CO2 and overall C1 selectivity. The presented approach to promotion seems to decouple the enhancement of the FT and the water–gas shift reaction. We introduce a general catalyst design principle that can be extended to other key catalytic processes relying on alkali and transition metal promotion

    XPS surface analysis of ceria-based materials: Experimental methods and considerations

    Get PDF
    X-ray photoelectron spectroscopy (XPS) analysis of cerium is ubiquitous amongst the catalytic and materials literature however errors in experimental procedure and data analysis are often easily proliferated. In this work we focus on the best practice for experimental construction when approaching the task of understanding chemical environments in cerium-based materials by XPS

    Comparison of 3 T and 1.5 T for T2* magnetic resonance of tissue iron.

    Get PDF
    BACKGROUND: T2* magnetic resonance of tissue iron concentration has improved the outcome of transfusion dependant anaemia patients. Clinical evaluation is performed at 1.5 T but scanners operating at 3 T are increasing in numbers. There is a paucity of data on the relative merits of iron quantification at 3 T vs 1.5 T. METHODS: A total of 104 transfusion dependent anaemia patients and 20 normal volunteers were prospectively recruited to undergo cardiac and liver T2* assessment at both 1.5 T and 3 T. Intra-observer, inter-observer and inter-study reproducibility analysis were performed on 20 randomly selected patients for cardiac and liver T2*. RESULTS: Association between heart and liver T2* at 1.5 T and 3 T was non-linear with good fit (R (2) = 0.954, p < 0.001 for heart white-blood (WB) imaging; R (2) = 0.931, p < 0.001 for heart black-blood (BB) imaging; R (2) = 0.993, p < 0.001 for liver imaging). R2* approximately doubled between 1.5 T and 3 T with linear fits for both heart and liver (94, 94 and 105 % respectively). Coefficients of variation for intra- and inter-observer reproducibility, as well as inter-study reproducibility trended to be less good at 3 T (3.5 to 6.5 %) than at 1.5 T (1.4 to 5.7 %) for both heart and liver T2*. Artefact scores for the heart were significantly worse with the 3 T BB sequence (median 4, IQR 2-5) compared with the 1.5 T BB sequence (4 [3-5], p = 0.007). CONCLUSION: Heart and liver T2* and R2* at 3 T show close association with 1.5 T values, but there were more artefacts at 3 T and trends to lower reproducibility causing difficulty in quantifying low T2* values with high tissue iron. Therefore T2* imaging at 1.5 T remains the gold standard for clinical practice. However, in centres where only 3 T is available, equivalent values at 1.5 T may be approximated by halving the 3 T tissue R2* with subsequent conversion to T2*
    • …
    corecore