140 research outputs found

    LSS 2018: A double-lined spectroscopic binary central star with an extremely large reflection effect

    Get PDF
    LSS 2018, the central star of the planetry nebulae DS1, was found to be a double-lined spectroscopic binary with a period of 8.571 hours. Light variations with the same period were observed in U, B, and V; in the wavelength regions defined by the two IUE cameras; and in the strength of the CIII 4647 emission line. The light variations can be accurately predicted by a simple reflection effect, and an analysis of the light curves yields the angular diameter and effective temperature of the primary, the radii of the two stars in terms of their separation, and the inclination of the system. Analysis of the radial velocities then yields the masses of the two stars, their separation, the distance of the system, the absolute magnitude of the primary, and the size of the nebula

    The LSS 4300: A hot counterpart of Upsilon Sgr and KS Per?

    Get PDF
    A number of observations indicate that the star LSS 4300 is a high temperature analog of the hydrogen-deficient binaries upsilon Sgr and KS Per. A preliminary model-atmosphere analysis based on high-dispersion spectra obtained at Kitt Peak and Cerro Tololo yields T(eff) = 14,400 K, log(g) = 1.4, n(H)/n(He) = 0.003, and n(N)/n(C) = 20 (the corresponding values for upsilon Sgr are T(eff) = 10,000 K, log(g) = 1, n(H)/n(He) = 0.0005, and n(N)/n(C) = 20). The optical emission-line spectrum of LSS 4300 is nearly identical to that of upsilon Sgr, including strong, broad H alpha, FeII and Ca II emission. The ultraviolet spectrum of LSS 4300 was observed with IUE, and can be attributed almost entirely to the visible star. The JHKL photometry of LSS 4300 obtained at Cerro Tololo reveals an infrared excess nearly identical to that of upsilon Sgr. It is suggested that LSS 4300, like upsilon Sgr and KS Per, is a close binary system consisting of a helium supergiant of about one solar mass, and a secondary which is overluminous for its mass due to the accretion of matter from the primary, which is undergoing its second mass exchange

    Effective temperatures and luminosities of very hot o-type subdwarfs

    Get PDF
    Twelve very hot O-type subdwarfs were observed with the IUE-satellite in the low dispersion mode. Temperatures were derived from the slopes of the UV continua and distances were estimated from the color excesses. Most of them are hotter than 60,000 K, i.e., they are the hottest known subdwarfs. From their spectral appearance and location in a H.R.-diagram they form a rather inhomogeneous group. Three of them turned out to be central stars or nearly central stars, and four are definitely near the white dwarf stage. The surface helium to hydrogen ratio varies from about normal to the extreme case. Most of them appear to be post EHB objectives of 0.5 solar mass with a helium burning shell as their energy source, and their peculiar helium-to-hydrogen ratios are most likely the result of diffusion and convective mixing in surface layers

    Ultraviolet spectroscopy of selected astronomical sources

    Get PDF
    The birth rates of various kinds of white dwarf progenitors are estimated and the spectra of two very hot O-type white dwarfs are analyzed. The effective temperature of LSE 21 was found to be in excess of 100,000 K. The abundance of iron in the atmospheres of two central stars and numerous very hot O-type subdwarfs was found to be strongly variable. Results obtained by high resolution optical spectroscopy, UBV photometry, and low resolution IUE spectrophotometry for LSS 2018, the central star of the planetary nebulae DS1, are summarized. A planetary nebula surrounding the very hot subdwarf LSS 1362 was discovered. Analysis of results obtained by high resolution optical spectra shows agreement with an effective temperature of 110,000 K derived using low resolution IUE observations

    Discovery of New, Dust-Poor B[e] Supergiants in the Small Magellanic Cloud

    Full text link
    We present the discovery of three new B[e] supergiants (sgB[e] stars) in the Small Magellanic Cloud (SMC). All three stars (R15, R38, and R48) were identified in the course of our Runaways and Isolated O Type Star Spectroscopic Survey of the SMC (RIOTS4). The stars show optical spectra that closely resemble those of previously known B[e] stars, presenting numerous low-ionization forbidden and permitted emission lines such as [Fe II] and Fe II. Furthermore, our stars have luminosities of log(L/L_sun) > 4, demonstrating that they are supergiants. However, we find lower infrared excesses and weaker forbidden emission lines than for previously identified B[e] supergiants. Thus our stars appear to either have less material in their circumstellar disks than other sgB[e] stars, or the circumstellar material has lower dust content. We suggest that these may constitute a new subclass of dust-poor sgB[e] stars.Comment: 7 pages, 6 figures, accepted to Ap

    Cool bottom processes on the thermally-pulsing AGB and the isotopic composition of circumstellar dust grains

    Get PDF
    (Abridged) We examine the effects of cool bottom processing (CBP) on several isotopic ratios in the convective envelope during the TP-AGB phase of evolution in a 1.5 M_sun initial-mass star of solar initial composition. We use a parametric model which treats extra mixing by introducing mass flow between the convective envelope and the underlying radiative zone. The parameters of this model are the mass circulation rate (Mdot) and the maximum temperature (T_P) experienced by the circulating material. The effects of nuclear reactions in the flowing matter were calculated using a set of structures of the radiative zone selected from a complete stellar evolution calculation. The compositions of the flowing material were obtained and the resulting changes in the envelope determined. Abundant ^26Al was produced by CBP for log T_P > 7.65. While ^26Al/^27Al depends on T_P, the isotopic ratios in CNO elements depend dominantly on the circulation rate. The correspondence is shown between models of CBP as parameterized by a diffusion formalism within the stellar evolution model and those using the mass-flow formalism employed here. The isotopic ratios are compared with the data on circumstellar dust grains. It is found that the ratios ^{18}O/^{16}O, ^{17}O/^{16}O, and ^26Al/^27Al observed for oxide grains formed at C/O < 1 are reasonably well-understood. However, the ^15N/^14N, ^12C/^13C, and ^26Al/^27Al in carbide grains (C/O > 1) require many stellar sources with ^14N/^15N at least a factor of 4 below solar. The rare grains with ^12C/^13C < 10 cannot be produced by any red-giant or AGB source.Comment: 35 pages, plus 18 included figures. Scheduled for January 10, 2003 issue of Ap

    Staphylococcus aureus from patients with chronic rhinosinusitis show minimal genetic association between polyp and non-polyp phenotypes

    Get PDF
    Background: Staphylococcus aureus has a high prevalence in chronic rhinosinusitis (CRS) patients and is suggested to play a more etiopathogenic role in CRS patients with nasal polyps (CRSwNP), a severe form of the CRS spectrum with poorer surgical outcomes. We performed a microbial genome-wide association study (mGWAS) to investigate whether S. aureus isolates from CRS patients have particular genetic markers associated with CRS with nasal polyps (CRSwNP) or CRS without nasal polyps (CRSsNP). Methods: Whole genome sequencing was performed on S. aureus isolates collected from 28 CRSsNP and 30 CRSwNP patients. A mGWAS approach was employed using large-scale comparative genomics to identify genetic variation within our dataset. Results: Considerable genetic variation was observed, with >90,000 single nucleotide polymorphisms (SNPs) sites identified. There was little correlation with CRS subtype based on SNPs and Insertion/Delection (Indels). One indel was found to significantly correlate with CRSwNP and occurred in the promoter region of a bacitracin transport system ATP-binding protein. Additionally, two variants of the highly variable superantigen-like (SSL) proteins were found to significantly correlate with each CRS phenotype. No significant association with other virulence or antibiotic resistance genes were observed, consistent with previous studies. Conclusion: To our knowledge this study is the first to use mGWAS to investigate the contribution of microbial genetic variation to CRS presentations. Utilising the most comprehensive genome-wide analysis methods available, our results suggest that CRS phenotype may be influenced by genetic factors other than specific virulence mechanisms within the S. aureus genome

    Reduced innate immune response to a Staphylococcus aureus small colony variant compared to its wild-type parent strain

    Get PDF
    Background: Staphylococcus aureus (S. aureus) small colony variants (SCVs) can survive within the host intracellular milieu and are associated with chronic relapsing infections. However, it is unknown whether host invasion rates and immune responses differ between SCVs and their wild-type counterparts. This study used a stable S. aureus SCV (WCH-SK2SCV) developed from a clinical isolate (WCH-SK2WT) in inflammation-relevant conditions. Intracellular infection rates as well as host immune responses to WCH-SK2WT and WCH-SK2SCV infections were investigated. Method: NuLi-1 cells were infected with either WCH-SK2WT or WCH-SK2SCV, and the intracellular infection rate was determined over time. mRNA expression of cells infected with each strain intra- and extra-cellularly was analyzed using a microfluidic qPCR array to generate an expression profile of thirty-nine genes involved in the host immune response. Results: No difference was found in the intracellular infection rate between WCH-SK2WT and WCH-SK2SCV. Whereas, extracellular infection induced a robust pro-inflammatory response, intracellular infection elicited a modest response. Intracellular WCH-SK2WT infection induced mRNA expression of TLR2, pro-inflammatory cytokines (IL1B, IL6, and IL12) and tissue remodeling factors (MMP9). In contrast, intracellular WCH-SK2SCV infection induced up regulation of only TLR2. Conclusions: Whereas, host intracellular infection rates of WCH-SK2SCV and WCH-SK2WT were similar, WCH-SK2SCV intracellular infection induced a less widespread up regulation of pro-inflammatory and tissue remodeling factors in comparison to intracellular WCH-SK2WT infection. These findings support the current view that SCVs are able to evade host immune detection to allow their own survival.Judy J.J. Ou, Amanda J. Drilling, Clare Cooksley, Ahmed Bassiouni, Stephen P. Kidd, Alkis J. Psaltis, Peter J. Wormald and Sarah Vreugd

    An analysis of ultraviolet spectra of Extreme Helium Stars and new clues to their origins

    Full text link
    Abundances of about 18 elements including the heavy elements Y and Zr are determined from Hubble Space Telescope Space Telescope Imaging Spectrograph ultraviolet spectra of seven extreme helium stars (EHes): LSE 78, BD+10 2179, V1920 Cyg, HD 124448, PV Tel, LS IV -1 2, and FQ Aqr. New optical spectra of the three stars -- BD+10 2179, V1920 Cyg, and HD 124448 were analysed. The abundance analyses is done using LTE line formation and LTE model atmospheres especially constructed for these EHe stars. The stellar parameters derived from an EHe's UV spectrum are in satisfactory agreement with those derived from its optical spectrum. Adopted abundances for the seven EHes are from a combination of the UV and optical analyses. Published results for an additional ten EHes provide abundances obtained in a nearly uniform manner for a total of 17 EHes, the largest sample on record. The initial metallicity of an EHe is indicated by the abundance of elements from Al to Ni; Fe is adopted to be the representative of initial metallicity. Iron abundances range from approximately solar to about one-hundredth of solar. Clues to EHe evolution are contained within the H, He, C, N, O, Y, and Zr abundances. Two novel results are (i) the O abundance for some stars is close to the predicted initial abundance yet the N abundance indicates almost complete conversion of initial C, N, and O to N by the CNO-cycles; (ii) three of the seven stars with UV spectra show a strong enhancement of Y and Zr attributable to an s-process. The observed compositions are discussed in light of expectations from accretion of a He white dwarf by a CO white dwarf.Comment: 126 pages, 15 figures, 20 Tables, accepted for publication in the Ap
    corecore