110 research outputs found

    Coupling light to periodic nanostructures

    Get PDF
    This thesis describes coupling of light to periodic structures. A material is patterned with a regular pattern on a length scale comparable to the wavelength of light. With these structures, light can be manipulated very precisely. The structures find applications in semiconductor lasers, light emitting diodes (LEDs), photovoltaic cells, and detectors of light. A periodic array of holes in a layer of semiconductor or in a thin metal film causes a coupling between the incident light and light that is trapped inside the layer. This coupling can be studied by measuring the reflection and transmission. The environment has an important role here; e.g. placing glass antennas in the holes can increase the coupling between light and plasmons. A thin, superconducting wire can be used as a detector of light. To increase the surface area, the wire is folded into a meander. The optical properties of this detector are very dependent on the polarization, due to the regular periodic structure of the meander. Moreover, we found that the absorption of a very thin absorbing layer can be almost 100%, when it is illuminated under the right angle, from the substrate. This can be used to increase the efficiency of the detectors.LEI Universiteit LeidenUBL - phd migration 201

    Direct evidence for Cooper pairing without a spectral gap in a disordered superconductor above Tc

    Get PDF
    The idea that preformed Cooper pairs could exist in a superconductor at temperatures higher than its zero-resistance critical temperature (T-c) has been explored for unconventional, interfacial, and disordered superconductors, but direct experimental evidence is lacking. We used scanning tunneling noise spectroscopy to show that preformed Cooper pairs exist up to temperatures much higher than T-c in the disordered superconductor titanium nitride by observing an enhancement in the shot noise that is equivalent to a change of the effective charge from one to two electron charges. We further show that the spectroscopic gap fills up rather than closes with increasing temperature. Our results demonstrate the existence of a state above T-c that, much like an ordinary metal, has no (pseudo)gap but carries charge through paired electrons.Quantum Matter and Optic

    NIKA2: a mm camera for cluster cosmology

    Get PDF
    Galaxy clusters constitute a major cosmological probe. However, Planck 2015 results have shown a weak tension between CMB-derived and cluster-derived cosmological parameters. This tension might be due to poor knowledge of the cluster mass and observable relationship. As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations (e.g. SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium for low redshift clusters (z < 0:2). For high redshift clusters ( z > 0:5) high resolution and high sensitivity SZ observations are needed. With both a wide field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope (Pico Veleta, Spain) is particularly well adapted for these observations. The NIKA2 SZ observation program will map a large sample of clusters (50) at redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m telescope to cover the various configurations and observation conditions expected for NIKA2

    The NIKA2 large field-of-view millimeter continuum camera for the 30-m IRAM telescope

    Get PDF
    Context. Millimetre-wave continuum astronomy is today an indispensable tool for both general astrophysics studies (e.g. star formation, nearby galaxies) and cosmology (e.g. CMB - cosmic microwave background and high-redshift galaxies). General purpose, large-field-of-view instruments are needed to map the sky at intermediate angular scales not accessible by the high-resolution interferometers (e.g. ALMA in Chile, NOEMA in the French Alps) and by the coarse angular resolution space-borne or ground-based surveys (e.g. Planck, ACT, SPT). These instruments have to be installed at the focal plane of the largest single-dish telescopes, which are placed at high altitude on selected dry observing sites. In this context, we have constructed and deployed a three-thousand-pixel dual-band (150 GHz and 260 GHz, respectively 2 mm and 1.15 mm wavelengths) camera to image an instantaneous circular field-ofview of 6.5 arcminutes in diameter, and configurable to map the linear polarisation at 260 GHz. Aims. First, we are providing a detailed description of this instrument, named NIKA2 (New IRAM KID Arrays 2), in particular focussing on the cryogenics, optics, focal plane arrays based on Kinetic Inductance Detectors (KID), and the readout electronics. The focal planes and part of the optics are cooled down to the nominal 150 mK operating temperature by means of an ad-hoc dilution refrigerator. Secondly, we are presenting the performance measured on the sky during the commissioning runs that took place between October 2015 and April 2017 at the 30-meter IRAM (Institut of Millimetric Radio Astronomy) telescope at Pico Veleta, near Granada (Spain). Methods. We have targeted a number of astronomical sources. Starting from beam-maps on primary and secondary calibrators we have then gone to extended sources and faint objects. Both internal (electronic) and on-the-sky calibrations are applied. The general methods are described in the present paper. Results. NIKA2 has been successfully deployed and commissioned, performing in-line with expectations. In particular, NIKA2 exhibits full width at half maximum (FWHM) angular resolutions of around 11 and 17.5 arc-seconds at respectively 260 and 150 GHz. The noise equivalent flux densities (NEFD) are, at these two respective frequencies, 33±2 and 8±1 mJy ·s 1/2. A first successful science verification run was achieved in April 2017. The instrument is currently offered to the astronomy community and will remain available for at least the following ten years

    Understanding and minimizing resonance frequency deviations on a 4-in. kilo-pixel kinetic inductance detector array

    No full text
    International audienceOne of the advantages of kinetic inductance detectors is their intrinsic frequency domain multiplexing capability. However, fabrication imperfections usually give rise to resonance frequency deviations, which create frequency collision and limit the array yield. Here, we study the resonance frequency deviation of a 4-in. kilo-pixel lumped-element kinetic inductance detector (LEKID) array using optical mapping. Using the measured resonator dimensions and film thickness, the fractional deviation can be explained within ±25×10−3, whereas the residual deviation is due to variation of electric film properties. Using the capacitor trimming technique, the fractional deviation is decreased by a factor of 14. The yield of the trimming process is found to be 97%. The mapping yield, measured under a 110 K background, is improved from 69% to 76%, which can be further improved to 81% after updating our readout system. With the improvement in yield, the capacitor trimming technique may benefit future large-format LEKID arrays

    Asymmetry reversal and waveguide modes in photonic crystal slabs

    No full text
    The measured reflection spectra of two-dimensional photonic crystal slabs consist of an asymmetric peak on top of an oscillating background. For p-polarized light, the asymmetry of the peak flips for angles of incidence beyond Brewster’s angle. We explain the observed line shapes with a Fano model that includes loss and use a waveguide model to predict the resonance frequencies of the photonic crystal slab. Finite-difference time domain calculations support the model and show that the resonance due to a higher order mode disappears when the substrate refractive index is increased beyond ns = 2.04. This is readily explained by the cut-off condition of the modes given by the waveguide model.NanofacilityApplied Science

    Fabrication and performance verification of a 961 pixel Kinetic Inductance Detector system for future space borne observatories 9914-138

    No full text
    Astronomical observations at infrared, sub-millimetre, and millimetre wavelengths are essential for addressing many of the key questions in astrophysics. Future ground- and space based observatories need large detector arrays with a sensitivity limited only by the noise of the radiation background. We demonstrate that antenna coupled Microwave Kinetic Inductance Detectors allow us to create kpixel large arrays with background limited sensitivity over the entire FIR/mmwavelength range. We discuss in detail the readout system and experimental results of a 961 pixel array, optimised for 850 GHz radiation that is read out with a single readout chain

    Microfabrication Developments for Future Instruments Using KID Detectors

    No full text
    International audienceThe NIKA2 instrument, operating at the IRAM 30-m telescope, demonstrates that the aluminum LEKID technology is a state-of-the-art solution for detectors dedicated to millimeter-wave astronomy. Following this path, several instrumental projects envisage today the use of LEKID technology. To cover the full 60–600 GHz band, relevant for CMB-oriented experiments, we are exploring new materials and solutions and we present our latest results. We present a new technology from NIKA2 developments to address the band 450–650 GHz. And we expose our first developments of the trilayer Al/Ti/Al technology following our work for low frequencies (60–80 GHz)

    Low-frequency noise in Josephson junctions for superconducting qubits

    No full text
    The authors have studied low-frequency resistance fluctuations in shadow-evaporated Al/AlOx/Al tunnel junctions. Between 300 and 5?K the spectral density follows a 1/f law. Below 5?K, individual defects distort the 1/f shape of the spectrum. The spectral density decreases linearly with temperature between 150 and 1?K and saturates below 0.8?K. At 4.2?K, it is about two orders of magnitude lower than expected from a recent survey [D. J. Van Harlingen et al., Phys. Rev. B 70, 064510 (2004)]. Due to saturation below 0.8?K the estimated qubit dephasing times at 100?mK are only about two times longer than calculated by Van Harlingen et al.Kavli Institute of NanoscienceApplied Science
    • …
    corecore