13 research outputs found

    Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

    Full text link
    In this paper, we propose a deep convolutional recurrent neural network that predicts action sequences for task and motion planning (TAMP) from an initial scene image. Typical TAMP problems are formalized by combining reasoning on a symbolic, discrete level (e.g. first-order logic) with continuous motion planning such as nonlinear trajectory optimization. Due to the great combinatorial complexity of possible discrete action sequences, a large number of optimization/motion planning problems have to be solved to find a solution, which limits the scalability of these approaches. To circumvent this combinatorial complexity, we develop a neural network which, based on an initial image of the scene, directly predicts promising discrete action sequences such that ideally only one motion planning problem has to be solved to find a solution to the overall TAMP problem. A key aspect is that our method generalizes to scenes with many and varying number of objects, although being trained on only two objects at a time. This is possible by encoding the objects of the scene in images as input to the neural network, instead of a fixed feature vector. Results show runtime improvements of several magnitudes. Video: https://youtu.be/i8yyEbbvoEkComment: Robotics: Science and Systems (R:SS) 202

    Learning to solve sequential physical reasoning problems from a scene image

    Get PDF
    In this article, we propose deep visual reasoning, which is a convolutional recurrent neural network that predicts discrete action sequences from an initial scene image for sequential manipulation problems that arise, for example, in task and motion planning (TAMP). Typical TAMP problems are formalized by combining reasoning on a symbolic, discrete level (e.g., first-order logic) with continuous motion planning such as nonlinear trajectory optimization. The action sequences represent the discrete decisions on a symbolic level, which, in turn, parameterize a nonlinear trajectory optimization problem. Owing to the great combinatorial complexity of possible discrete action sequences, a large number of optimization/motion planning problems have to be solved to find a solution, which limits the scalability of these approaches. To circumvent this combinatorial complexity, we introduce deep visual reasoning: based on a segmented initial image of the scene, a neural network directly predicts promising discrete action sequences such that ideally only one motion planning problem has to be solved to find a solution to the overall TAMP problem. Our method generalizes to scenes with many and varying numbers of objects, although being trained on only two objects at a time. This is possible by encoding the objects of the scene and the goal in (segmented) images as input to the neural network, instead of a fixed feature vector. We show that the framework can not only handle kinematic problems such as pick-and-place (as typical in TAMP), but also tool-use scenarios for planar pushing under quasi-static dynamic models. Here, the image-based representation enables generalization to other shapes than during training. Results show runtime improvements of several orders of magnitudes by, in many cases, removing the need to search over the discrete action sequences.DFG, 390523135, EXC 2002: Science of Intelligence (SCIoI

    Robust Task and Motion Planning for Long-Horizon Architectural Construction Planning

    Full text link
    Integrating robotic systems in architectural and construction processes is of core interest to increase the efficiency of the building industry. Automated planning for such systems enables design analysis tools and facilitates faster design iteration cycles for designers and engineers. However, generic task-and-motion planning (TAMP) for long-horizon construction processes is beyond the capabilities of current approaches. In this paper, we develop a multi-agent TAMP framework for long horizon problems such as constructing a full-scale building. To this end we extend the Logic-Geometric Programming framework by sampling-based motion planning,a limited horizon approach, and a task-specific structural stability optimization that allow an effective decomposition of the task. We show that our framework is capable of constructing a large pavilion built from several hundred geometrically unique building elements from start to end autonomously

    Large Language Models as General Pattern Machines

    Full text link
    We observe that pre-trained large language models (LLMs) are capable of autoregressively completing complex token sequences -- from arbitrary ones procedurally generated by probabilistic context-free grammars (PCFG), to more rich spatial patterns found in the Abstraction and Reasoning Corpus (ARC), a general AI benchmark, prompted in the style of ASCII art. Surprisingly, pattern completion proficiency can be partially retained even when the sequences are expressed using tokens randomly sampled from the vocabulary. These results suggest that without any additional training, LLMs can serve as general sequence modelers, driven by in-context learning. In this work, we investigate how these zero-shot capabilities may be applied to problems in robotics -- from extrapolating sequences of numbers that represent states over time to complete simple motions, to least-to-most prompting of reward-conditioned trajectories that can discover and represent closed-loop policies (e.g., a stabilizing controller for CartPole). While difficult to deploy today for real systems due to latency, context size limitations, and compute costs, the approach of using LLMs to drive low-level control may provide an exciting glimpse into how the patterns among words could be transferred to actions.Comment: 21 pages, 25 figures. To appear at Conference on Robot Learning (CoRL) 202

    Towards Generalist Biomedical AI

    Full text link
    Medicine is inherently multimodal, with rich data modalities spanning text, imaging, genomics, and more. Generalist biomedical artificial intelligence (AI) systems that flexibly encode, integrate, and interpret this data at scale can potentially enable impactful applications ranging from scientific discovery to care delivery. To enable the development of these models, we first curate MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses 14 diverse tasks such as medical question answering, mammography and dermatology image interpretation, radiology report generation and summarization, and genomic variant calling. We then introduce Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system. Med-PaLM M is a large multimodal generative model that flexibly encodes and interprets biomedical data including clinical language, imaging, and genomics with the same set of model weights. Med-PaLM M reaches performance competitive with or exceeding the state of the art on all MultiMedBench tasks, often surpassing specialist models by a wide margin. We also report examples of zero-shot generalization to novel medical concepts and tasks, positive transfer learning across tasks, and emergent zero-shot medical reasoning. To further probe the capabilities and limitations of Med-PaLM M, we conduct a radiologist evaluation of model-generated (and human) chest X-ray reports and observe encouraging performance across model scales. In a side-by-side ranking on 246 retrospective chest X-rays, clinicians express a pairwise preference for Med-PaLM M reports over those produced by radiologists in up to 40.50% of cases, suggesting potential clinical utility. While considerable work is needed to validate these models in real-world use cases, our results represent a milestone towards the development of generalist biomedical AI systems

    Learning Geometric Reasoning and Control for Long-Horizon Tasks from Visual Input

    No full text

    Reinforcement Learning with Neural Radiance Fields

    Full text link
    It is a long-standing problem to find effective representations for training reinforcement learning (RL) agents. This paper demonstrates that learning state representations with supervision from Neural Radiance Fields (NeRFs) can improve the performance of RL compared to other learned representations or even low-dimensional, hand-engineered state information. Specifically, we propose to train an encoder that maps multiple image observations to a latent space describing the objects in the scene. The decoder built from a latent-conditioned NeRF serves as the supervision signal to learn the latent space. An RL algorithm then operates on the learned latent space as its state representation. We call this NeRF-RL. Our experiments indicate that NeRF as supervision leads to a latent space better suited for the downstream RL tasks involving robotic object manipulations like hanging mugs on hooks, pushing objects, or opening doors. Video: https://dannydriess.github.io/nerf-r
    corecore