
Article

The International Journal of

Robotics Research

2021, Vol. 40(12-14) 1435–1466

� The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/02783649211056967

journals.sagepub.com/home/ijr

Learning to solve sequential physical
reasoning problems from a scene image

Danny Driess1,2 , Jung-Su Ha1,2 and Marc Toussaint1,2

Abstract

In this article, we propose deep visual reasoning, which is a convolutional recurrent neural network that predicts discrete

action sequences from an initial scene image for sequential manipulation problems that arise, for example, in task and

motion planning (TAMP). Typical TAMP problems are formalized by combining reasoning on a symbolic, discrete level

(e.g., first-order logic) with continuous motion planning such as nonlinear trajectory optimization. The action sequences

represent the discrete decisions on a symbolic level, which, in turn, parameterize a nonlinear trajectory optimization prob-

lem. Owing to the great combinatorial complexity of possible discrete action sequences, a large number of optimization/

motion planning problems have to be solved to find a solution, which limits the scalability of these approaches. To circum-

vent this combinatorial complexity, we introduce deep visual reasoning: based on a segmented initial image of the scene,

a neural network directly predicts promising discrete action sequences such that ideally only one motion planning prob-

lem has to be solved to find a solution to the overall TAMP problem. Our method generalizes to scenes with many and

varying numbers of objects, although being trained on only two objects at a time. This is possible by encoding the objects

of the scene and the goal in (segmented) images as input to the neural network, instead of a fixed feature vector. We show

that the framework can not only handle kinematic problems such as pick-and-place (as typical in TAMP), but also tool-

use scenarios for planar pushing under quasi-static dynamic models. Here, the image-based representation enables gen-

eralization to other shapes than during training. Results show runtime improvements of several orders of magnitudes by,

in many cases, removing the need to search over the discrete action sequences.

Keywords

Task and motion planning, deep learning, sequential manipulation, physical reasoning, planar pushing, logic geo-
metric programming, offline reinforcement learning, deep Q-learning

1. Introduction

A major challenge in sequential manipulation problems is

that they inherently involve discrete and continuous aspects.

To account for this hybrid nature of manipulation, task and

motion planning (TAMP) problems are usually formalized

by combining reasoning on a symbolic, discrete level with

continuous motion planning. The symbolic level, e.g.,

defined in terms of first-order logic, proposes high-level

discrete action sequences for which the motion planner,

e.g., nonlinear trajectory optimization or a sampling-based

method, tries to find configurations and motions that fulfill

the requirements induced by the high-level action sequence

or return that the action sequence is infeasible. Although

most TAMP approaches focus on kinematic tasks such as

pick and place, the hybrid nature of manipulation more

broadly appears in manipulation planning through contacts,

where it is typically addressed in terms of mixed integer

optimization formulations.

Owing to the high combinatorial complexity of possible

discrete action sequences or integer assignments, a large

number of (potentially hard) motion planning problems

have to be solved to find a solution to the overall TAMP/

manipulation problem. This is mainly caused by the fact

that many TAMP problems are difficult, because, mostly

due to kinematic limits and geometric constraints, the

majority of action sequences are actually infeasible.

Moreover, it typically takes more computation time for a

motion planner to reliably detect infeasibility of a high-

level action sequence than to find a feasible motion when

1Learning and Intelligent Systems, TU Berlin, Germany
2Max-Planck Institute for Intelligent Systems, Stuttgart, Germany

Corresponding author:

Danny Driess, Learning and Intelligent Systems Lab, TU Berlin,

Marchstraße 23, 10587 Berlin, Germany.

Email: danny.driess@gmail.com

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649211056967
journals.sagepub.com/home/ijr

it exists. Proving infeasibility is, in many cases, not even

possible. In addition, for a feasible action sequence, the

resulting motion planning problem in itself is often non-

trivial and hard to solve. Consequently, sequential manipu-

lation problems, which intuitively seem simple, can take a

very long time to solve.

To overcome this combinatorial complexity, we aim to

learn to predict promising action sequences from the scene

as input. Using this prediction as a search heuristic on the

symbolic level, we can drastically reduce the number of

motion planning problems that need to be evaluated.

Ideally, we seek to directly predict a feasible and cost-

efficient action sequence, requiring only a single motion

planning problem to be solved.

However, learning to predict such action sequences

imposes multiple challenges. First, the objects in the scene

and the goal have to be encoded as input to the predictor in

a way that enables similar generalization capabilities to

classical TAMP approaches with respect to scenes with

many and changing numbers of objects and goals. Second,

the large variety of such scenes and goals, especially if

multiple objects are involved, makes it difficult to generate

a sufficient dataset.

Recently, Wells et al. (2019) and Driess et al. (2020b)

proposed a classifier that predicts the feasibility of a

motion planning problem resulting from a discrete decision

in the task domain. However, a major limitation of their

approaches is that the feasibility for only a single action is

predicted, whereas the combinatorial complexity of TAMP

especially arises from action sequences and it is not

straightforward to utilize such a classifier for action

sequence prediction within TAMP.

To address these issues, we train a neural network to pre-

dict action sequences from the initial scene and the goal as

input. An important question is how the objects in the scene

and the goal can be encoded as input to the predictor to

ensure strong generalization. By encoding the objects (and

the goal) in the image space, we show that the network is

able to generalize to scenes with many and changing num-

bers of objects with only little runtime increase, although it

has been trained on only a fixed number of objects.

Compared with a purely discriminative model, because

the predictions of our network are goal-conditioned, we do

not rely on the network to search over many sequences, but

can directly generate promising sequences with the network

efficiently.

The predicted action sequences parameterize a nonlinear

trajectory optimization problem that optimizes a globally

consistent path fulfilling the requirements induced by the

actions. This not only allows us to solve typical kinematic

problems such as pick and place, but also problems that

involve dynamic models. In our case, we build upon the

contact formulation from Toussaint et al. (2020) to solve

manipulation problems where the robot has to utilize a

hook-shaped tool to push and/or pull an object to a desired

target location. In order to make this possible, we extend

the formulation from Toussaint et al. (2020) by introducing

additional discrete decisions that model which part of the

tool should establish contact with which side of the object.

This robustifies the convergence of the optimizer, but also

introduces additional combinatorics, which we can tackle

with our proposed network. For this scenario, we demon-

strate another advantage of the image-based representation,

namely that the network can also generalize to other shapes

than during training, because the side to push on the object

is also encoded in the image space.

To summarize, our main contributions are as follows.

� A convolutional, recurrent neural network (RNN) that

predicts from an initial segmented scene image and a

task goal promising action sequences, which parame-

terize a nonlinear trajectory optimization problem, to

solve the TAMP problem.
� A way to integrate this network into the tree search

algorithm of the underlying TAMP framework.
� We demonstrate that the network generalizes to situa-

tions with many and varying numbers of objects in the

scene, although it has been trained on only two objects

at a time.
� We demonstrate the method not only on typical kine-

matic pick-and-place scenarios, but also in a scenario

where a hook-shaped tool has to be used to push/pull

an object to a desired target location.
� The image representation enables the network to gener-

alize to other shapes than during training for the push-

ing scenario.

From a methodological point of view, this work com-

bines nonlinear trajectory optimization, first-order logic

reasoning and deep convolutional RNNs.

The present work is an extended version of Driess et al.

(2020a). Apart from more in-depth explanations, we

include a new set of experiments on a tool-use pushing sce-

nario (Section 5.3), where we also show generalization cap-

abilities to other shapes than during training. Moreover, we

provide more evaluations of the existing experiments, e.g.,

with an investigation of the data efficiency of the approach.

Furthermore, we extend the framework to not only being

able to find feasible solutions as in the original work, but

also taking the trajectory costs into account.

The rest of the article is organized as follows. We

describe logic geometric programming (LGP) as the TAMP

framework of this work in Section 3. Then, in Section 4,

the deep visual reasoning neural network methodology, its

architecture, and how it can be integrated into the LGP tree

search algorithm is proposed. In Section 4.5, we discuss

the relation of our proposed network to offline reinforce-

ment learning (RL). Sections 5.2 and 5.3 present the results

of the pick and place and the pushing experiments, respec-

tively. A discussion about the strengths and limitations of

the framework can be found in Section 6.

1436 The International Journal of Robotics Research 40(12-14)

2. Related work

2.1. Learning to plan

There is great deal of interest in learning to mimic planning

itself. The architectures in Tamar et al. (2016), Okada et al.

(2017), Srinivas et al. (2018), and Amos et al. (2018)

resemble value iteration, path integral control, gradient-

based trajectory optimization, and iterative linear quadratic

regulator (LQR) methods, respectively. For sampling-based

motion planning, Ichter et al. (2018) learned an optimal

sampling distribution conditioned on the scene and the goal

to speed up planning. To enable planning with raw sensory

input, there are several works that learn a compact represen-

tation and its dynamics in sensor space to then apply plan-

ning or RL in the learned latent space (Boots et al., 2011;

Finn et al., 2016; Ha et al., 2018; Ichter and Pavone, 2019;

Lange et al., 2012; Silver et al., 2017; Watter et al., 2015;

Xie et al., 2019). Another line of research is to learn an

action-conditioned predictive model (Dosovitskiy and

Koltun, 2017; Ebert et al., 2017; Finn and Levine, 2017;

Pascanu et al., 2017; Paxton et al., 2019; Racanière et al.,

2017; Xie et al., 2019). With this model, the future state of

the environment, e.g., in image space conditioned on the

action, is predicted, which can then be utilized within

model predictive control (Finn and Levine, 2017; Xie et al.,

2019) or to guide tree search (Paxton et al., 2019). The

underlying idea is that learning the latent representation

and dynamics enables reasoning with high-dimensional

sensory data. However, a disadvantage of such predictive

models is that a search over actions is still necessary, which

grows exponentially with sequence length. For our problem

which contains handovers or other complex behaviors that

are induced by an action, learning a predictive model in the

image space seems difficult. Most of these approaches

focus on low-level actions. Furthermore, the behavior of

our trajectory optimizer is only defined for a complete

action sequence, because future actions have an influence

on the trajectory of the past. Therefore, state predictive

models cannot be applied directly to our problem.

The proposed method in the present work learns a rele-

vant representation of the scene from an initial scene image

such that a recurrent module can reason about long-term

action effects without a direct state prediction.

2.2. Learning heuristics for TAMP and MIP in

robotics

A general approach to TAMP (Garrett et al., 2020) is to

combine discrete logic search with a sampling-based

motion planning algorithm (Dantam et al., 2018; de

Silva et al., 2013; Kaelbling and Lozano-Pérez, 2011;

Srivastava et al., 2014) or constraint satisfaction methods

(Lagriffoul et al., 2014; Lagriffoul et al., 2012; Lozano-

Pérez and Kaelbling, 2014). A major difficulty arises from

the fact that the number of feasible symbolic sequences

increases exponentially with the number of objects and

sequence length. To reduce the large number of geometric

problems that need to be solved, many heuristics have been

developed, e.g., Kaelbling and Lozano-Pérez (2011),

Rodriguez et al. (2019), and Driess et al. (2019a), to effi-

ciently prune the search tree. Another approach to TAMP

is LGP (Ha et al., 2020; Toussaint, 2015; Toussaint et al.,

2018, 2020; Toussaint and Lopes, 2017), which combines

logic search with trajectory optimization. The advantage of

an optimization-based approach to TAMP is that the trajec-

tories can be optimized with global consistency, which,

e.g., allows handover motions to be generated efficiently.

LGP will be the underlying framework of the present work.

For large-scale problems, however, LGP also suffers from

the exponentially increasing number of possible symbolic

action sequences (Hartmann et al., 2020). Solving this

issue is one of the main motivations for our work.

Instead of handcrafted heuristics, there are several

approaches to integrate learning into TAMP to guide the

discrete search in order to speed up finding a solution

(Chitnis et al., 2016, 2020; Garrett et al., 2016; Kim et al.,

2018, 2019; Wang et al., 2018). However, these mainly act

as heuristics, meaning that one still has to search over the

discrete variables and probably solve many motion plan-

ning problems. In contrast, the network in our approach

generates goal-conditioned action sequences, such that in

most cases there is no search necessary at all. Similarly, in

optimal control for hybrid domains mixed-integer programs

suffer from the same combinatorial complexity (Doshi

et al., 2020; Hogan et al., 2018; Hogan and Rodriguez,

2016). LGP also can be viewed as a generalization of

mixed-integer programs. In Carpentier et al. (2017) (foot-

step planning) and Hogan et al. (2018) (planar pushing),

learning was used to predict the integer assignments, how-

ever, this was for a single task only with no generalization

to different scenarios.

A crucial question in integrating learning into TAMP is

how the scene and goals can be encoded as input to the

learning algorithm in a way that enables similar generaliza-

tion capabilities to classical TAMP. For example, in Paxton

et al. (2019) the considered scene always contains the same

four objects with the same colors, which allows them to have

a fixed input vector of separate actions for all objects. In

Wilson and Hermans (2019), convolutional neural networks

(CNNs) and graph neural networks are utilized to learn a

state representation for RL, similarly in Li et al. (2020). In

Bejjani et al. (2019), rendered images from a simulator were

used as state representation to exploit the generalization abil-

ity of CNNs. The work of Kloss et al. (2020) exploits image-

based representations for pushing scenarios, similar to our

encoding. In our work, the network learns a representation in

image space that is able to reason over complex action

sequences from an initial observation only and is able to gen-

eralize over changing numbers of objects.

The work of Wells et al. (2019) and Driess et al. (2020b)

is most related to our approach. They both proposed to

learn a classifier which predicts the feasibility of a motion

planning problem resulting from a single action. The input

Driess et al. 1437

is a feature representation of the scene (Wells et al., 2019)

or a scene image (Driess et al., 2020b). Although both show

generalization capabilities to multiple objects, one major

challenge of TAMP comes from action sequences and it is,

however, unclear how a single step classifier as in Wells

et al. (2019) and Driess et al. (2020b) could be utilized for

sequence prediction.

On challenge in TAMP scenarios that contain many

objects is to identify which objects are relevant for solving

the task, as has been considered in Lang and Toussaint

(2009) and Silver et al. (2020). Our proposed approach is

also able to reason over object importance, which makes

the generalization to multiple objects possible.

To the best of the authors’ knowledge, our work is the

first that learns to generate action sequences for an

optimization-based TAMP approach from an initial scene

image and the goal as input, while showing generalization

capabilities to multiple objects.

3. Logic Geometric Programming

for Task and Motion Planning

This work relies on LGP (Toussaint, 2015; Toussaint and

Lopes, 2017) as the underlying TAMP framework. The

high-level main idea behind LGP is a nonlinear trajectory

optimization problem over the continuous variable x, which

is the path of all robot joints and objects in the scene. The

constraints and costs of this trajectory optimization prob-

lem are parameterized by a discrete variable s that repre-

sents the state of a symbolic domain. The transitions of this

symbolic variable are subject to a first-order logic language

that induces a decision tree. Solving an LGP involves a tree

search over sequences of this discrete variable, where each

leaf node represents a nonlinear trajectory optimization

program (NLP). If a symbolic leaf node, i.e., a node where

the state s is in a symbolic goal state, is found and its corre-

sponding NLP is feasible, a solution to the TAMP problem

has been obtained. At all nodes, simpler NLPs define lower

bounds to the full trajectory optimization problem, which

can guide the search over the discrete actions. The LGP

formulation we present in this section is based on a recent

variant from Toussaint et al. (2020) that additionally allows

optimizing for physical interactions as compared with the

original formulation from Toussaint (2015). However, in

addition to Toussaint et al. (2020), we also consider the

search over actions that define a sequence of symbolic

states as part of the problem for the contact model formula-

tions introduced by Toussaint et al. (2020), where the

sequence of the symbolic state was specified manually.

3.1. LGP

Let X =X (s, S) � R
n(S) × SE(3)m(s, S) ×R

6�ncp(s, S) be the

configuration space as a function of the scene S and the

symbolic state variable s 2 S(S). This configuration space

contains the n(S)-dimensional generalized coordinate of

robot joints, the poses of m(s, S) multiple rigid objects and

six-dimensional wrench contact interactions for each of the

ncp(s, S) contact pairs.

The idea is to find a globally consistent path

x : ½0,KT � ! X (sk(t), S) in this configuration space which

minimizes the LGP

P(g, S)= min
K2N

x:½0,KT �!X (sk(t), S)
a1:K , s1:K

Z KT

0

c(x(t), _x(t),€x(t), sk(t), S) d

s:t ð1aÞ

8t2½0,KT � : heq(x(t), _x(t), sk(t), S)= 0 ð1bÞ

8t2½0,KT � : hineq(x(t), _x(t), sk(t), S)ł 0 ð1cÞ

8k = 1, ...,K : hsw(x(kT), _x(kT), ak , S)= 0 ð1dÞ

8k = 1, ...,K : ak 2 A(sk�1, S) ð1eÞ

8k = 1, ...,K : sk = succ(sk�1, ak) ð1fÞ

x(0)=~x0(S) ð1gÞ

s0 =~s0(S) ð1hÞ

sK 2 Sgoal(g): ð1iÞ

The path x is assumed to be globally continuous

(x 2 C(½0, TK�)) and consists of K 2 N phases (the number

is part of the decision problem itself), each of fixed dura-

tion T.0, in which we require smoothness

x 2 C2(½(k � 1)T , kT �). These phases are also referred to

as kinematic modes (Mason, 1985; Toussaint et al., 2018).

Note that the number of degrees of freedom of the objects

as well as the number of contact interactions depends on

the symbolic state sk(t) with k(t)= bt=Tc. Therefore, the

dimension of the path may vary between the phases. For

example, the symbolic state can express that a contact

interaction should take place at a certain phase, which

introduces a wrench interaction variable to the configura-

tion space in that phase.

The functions c, heq, hineq and, hence, the objectives in

phase k of the motion are parameterized by the discrete

variable (or integers in mixed-integer programming)

sk 2 S(S), representing the state of the symbolic domain.

The possible discrete transitions between sk�1 and sk are

determined by the successor function succ(� , �), which is

a function of the previous state sk�1 and the discrete action

ak at phase k. The successor function is defined through

the first-order logic language.

The discrete actions ak are of great importance for the

rest of the article. In general, those actions are grounded

action operators. Which actions are possible at which sym-

bolic state is determined by the logic and expressed in the

set A(sk�1, S).
The task or goal of the TAMP problem is defined sym-

bolically through the set Sgoal(g) for the symbolic goal (a

set of grounded literals) g 2 G(S), e.g., placing an object

on a table.

1438 The International Journal of Robotics Research 40(12-14)

To complete the description, hsw is a function that

imposes transition constraints on the path between the kine-

matic modes. The quantity ~x0(S) is the scene-dependent ini-

tial continuous state. For fixed s it is assumed that c, heq

and hineq are differentiable.

A sequence of actions a1:K uniquely determines the

sequence of symbolic states s0:K for a given initial sym-

bolic state s0 =~s0(S). Therefore, we equivalently express

that obtaining a solution to the LGP means finding an

action sequence a1:K whose corresponding symbolic state

sequence reaches the symbolic goal state and the corre-

sponding nonlinear trajectory optimization problem is fea-

sible. We define the feasibility of an action sequence

a1:K = (a1, . . . , aK) via the existence of a respective path,

namely,

FS a1:Kð Þ= 1 9x : ½0,KT � ! X : (1b) � (1h)
0 otherwise

�
: ð2Þ

The complete LGP formulation (1), however, not only

seeks to find a feasible solution, but also an action sequence

that leads to the minimum trajectory costs (1a) compared

with all other goal reaching sequences. We call a feasible

solution a solution to the TAMP/LGP problem, whereas we

call a solution that minimizes the cost an optimal solution

of the LGP. Owing to the vast number of possible discrete

action sequences, obtaining optimal solutions is often

intractable. Therefore, we mostly focus on obtaining a feasi-

ble solution, with the exception of Sections 4.8 and 5.3.7.

The feasibility as defined in (2) is a theoretical property

of the resulting nonlinear program. In practice, we solve (1)

numerically by discretizing x with a finite number of collo-

cation points in time, which leads to a finite-dimensional

optimization problem that we solve with an augmented

Lagrangian method with the Gauss–Newton method in its

inner loop. Therefore, FS(a1:K) is also determined numeri-

cally in the following way. If the accumulated constraint

violations (heq 6¼ 0, hineq.0) along the discretized trajec-

tory are below a certain threshold, then the solution found

by the optimizer is considered feasible, otherwise it is con-

sidered infeasible.

3.2. Multi-bound LGP tree search and lower

bounds

The logic induces a decision tree (called LGP tree) through

the set of possible actions A(sk�1, S) (1e) and the successor

function (1f). Solving a full path problem as a search heur-

istic to guide the tree search is too expensive. A key contri-

bution of Toussaint and Lopes (2017) is therefore to

introduce relaxations or lower bounds on (1) in the sense

that the feasibility of a lower bound is a necessary condi-

tion on the feasibility of the complete problem (1), whereas

these lower bounds should be computationally faster to

compute. Each node in the LGP tree defines several lower

bounds of (1).

More specifically, multi-bound LGP tree search uses

two lower bounds P1,P2, where P1 evaluates kinematic

feasibility of transition constraints hsw for a single config-

uration only (akin to inverse kinematics), and P2 evaluates

feasibility of a sequence of K transition configurations.

Only if both are feasible along a tree path it evaluates the

full trajectory LGP for a leaf node.

As we show in the experiments, even with those bounds,

a large number of NLPs have to be solved to find a feasible

solution for problems with a high combinatorial complex-

ity. Therefore, using these bounds is not sufficient to

achieve desirable solution times for the problems we con-

sider in the experiments. This is especially true if many

decisions are feasible in early phases of the sequence, but

then later become infeasible, because then the lower bounds

do not help much in pruning the search tree. These lower

bounds are, however, highly important to make the data

generation process tractable.

4. Deep visual reasoning

The central idea of this work is, given the scene and the

task goal as input, to predict a promising discrete action

sequence a1:K = (a1, . . . , aK) which reaches a symbolic

goal state and its corresponding trajectory optimization

problem is feasible. An ideal algorithm would directly pre-

dict an action sequence such that only a single NLP has to

be solved to find an overall feasible solution, which conse-

quently would lead to a significant speedup in solving the

LGP (1).

We first describe more precisely what should be pre-

dicted, then how the scene, i.e., the objects and actions that

operate on them, and the goal can be encoded as input to a

neural network that should perform the prediction. Finally,

we discuss how the network is integrated into the tree

search algorithm in a way that either directly predicts a fea-

sible sequence or, in case the network is mistaken, acts as a

search heuristic to further guide the search without losing

completeness, i.e., the ability to find a solution if one

exists. To allow for a more thorough comparison, we addi-

tionally propose an alternative way to integrate learning

into LGP based on a goal-independent recurrent feasibility

classifier.

4.1. Predicting promising action sequences

First, we define for the goal g the set of all action sequences

that lead to a symbolic goal state in the scene S as

T g, Sð Þ= fa1:K :8K
i = 1ai 2 A(si�1, S), s0 =~s0(S)

si = succ(si�1, ai), sK 2 Sgoal(g)g:
ð3Þ

In relation to the LGP tree, this is the set of all leaf

nodes and, hence, candidates for an overall feasible solu-

tion. One idea is to learn a discriminative model which pre-

dicts whether a complete sequence leads to a feasible NLP

and, hence, to a solution. To predict an action sequence one

Driess et al. 1439

would then choose the sequence from T (g, S) where the

discriminative model has the highest prediction. However,

computing T (g, S) (up to a maximum K) and then check-

ing all sequences with the discriminative model is computa-

tionally inefficient or even intractable, since jT (g, S)j can

be very large (Table 1).

Instead, we propose to learn a function p (a neural net-

work) that, given a scene description S, the task goal g, and

the past decisions a1:k�1, predicts whether a next action ak

at the current time step k is promising in the sense of the

probability that there exist future actions ak + 1:K such that

the complete sequence a1:K leads to a feasible NLP that

solves the original TAMP problem. Formally,

p(ak , g, a1, . . . , ak�1, S)=

p

�
9K ø k9ak + 1, ..., aK

: a1:K 2 T g, Sð Þ,FS a1:Kð Þ= 1

jak , g, a1, . . . , ak�1, S

�
:

ð4Þ

Note that this includes K = k, meaning the case where

at step k there exists an action such that sk 2 Sgoal and the

NLP is feasible.

In this way, we can utilize p to generate an action

sequence by choosing the action at each step where p has

the highest prediction. The exact algorithm is presented in

Section 4.6.

4.2. Training targets

The crucial question arises how p as defined in (4) can be

trained. The semantics of p is related to a universal Q-func-

tion, but it evaluates actions ak based on an implicit repre-

sentation of state (see Section 4.5). Furthermore, it turns

out that we can cast the problem into supervised learning

by transforming the data into suitable training targets.

Assume that one samples scenes Si, goals gi as well as

goal-reaching action sequences ai
1:Ki 2 T gi, Sið Þ, e.g., with

multi-bound LGP tree search. For each of these sampled

sequences, the feasibility of the resulting NLP is deter-

mined and saved in the set

Ddata =

��
Si, ai

1:Ki , gi,FSi ai
1:Ki

� ���n

i = 1

ð5Þ

where the feasibility FSi in scene Si is as defined in (2).

Based on this dataset, we define the training dataset for p as

Dtrain =

��
Si, ai

1:Ki , gi, f i

��n

i = 1

ð6Þ

where f i 2 0, 1f gKi

is a sequence of binary labels. Its jth

component f i
j indicates for every subsequence ai

1:j whether

it should be classified as promising as follows

f i
j =

1 FSi ai
1:Ki

� �
= 1

1 9 Sl, al
1:Kl , g

l,Fl
� �

2 Ddata :

Fl = FSl al
1:Kl

� �
= 1

^ gl = gi ^ al
1:j = ai

1:j

0 otherwise

8>>>>>><
>>>>>>:

: ð7Þ

Superscripts denote dataset indexing. If the action

sequence is feasible and solves the problem specified by gi,

then f i
j = 1 for all j = 1, . . . ,Ki (first case). This is the case

where p should predict a high probability at each step k to

follow a feasible sequence. If the action sequence with

index i is not feasible, but there exists a feasible one in

Ddata (index l) which has an overlap with the other

sequence up to step j, i.e., al
1:j = ai

1:j, then f i
j = 1 as well

(second case). In addition, in this case the network should

suggest to follow this decision, because it predicts that

there exist future decisions which lead to a feasible solu-

tion. Finally, in the last and third case where the sequence

is infeasible and has no overlap with other feasible

sequences, f i
j = 0, meaning that the network should predict

to not follow this decision. This data transformation is a

simple pre-processing step that allows us to train p in a

supervised sequence labeling setting, with the standard

(weighted) binary cross-entropy loss. Another advanta-

geous side-effect of this transformation is that it creates a

more balanced dataset with respect to the training targets.

4.3. Input to the neural network: encoding a, g,

and S

So far, we have formulated the predictor p in (4) in terms

of the scene S, symbolic actions a, and the goal g of the

LGP (1). In order to represent p as a neural network, we

need to find suitable encodings of a, g, and S.

Table 1. Number of action sequences that lead to the symbolic goal state over the length of the sequence for different numbers of

objects in the scene. These numbers correspond to the number of candidate trajectory optimization problems that in the worst case

have to be solved. Only a very small subset of those candidate sequences actually leads to a feasible NLP.

Number of objects Length of the action sequence

in the scene 2 3 4 5 6

1 8 32 192 1,024 5,632
2 8 96 704 6,400 51,200
3 8 160 1,216 15,872 145,920
4 8 224 1,728 29,440 289,792
5 8 288 2,240 47,104 482,816

1440 The International Journal of Robotics Research 40(12-14)

4.3.1. Splitting actions into action operator symbols and

objects. An action a is a grounded action operator, i.e., it is

a combination of an action operator symbol and objects in

the scene it refers to. The same holds true for a goal g.

Although the number of action operators is assumed to be

constant, the number of objects can be completely different

from scene to scene. Most neural networks, however, expect

inputs of fixed dimension. In order to achieve the same gen-

eralization capabilities of TAMP approaches with respect to

changing numbers of objects, we encode action and goal

symbols very differently to the objects they operate on. In

particular, object references are encoded in a way that

includes geometric scene information.

Specifically, given an action a, we decompose it into

a = (�a,O) 2 AO(s, S) � A×P(O(S)), where �a 2 A is its

discrete action operator symbol and O 2 P(O(S)) the tuple

of objects the action operates on. Note that O is a tuple of

objects, because an action a can operate on multiple

objects. For example, placing an object on a table requires

two elements from O to fulfill the predicate. The goal is

similarly decomposed into g = (�g,Og), �g 2 G, and

Og 2 P(O(S)). This separation seems to be a minor techni-

cal detail, which is, however, of key importance for the

generalizability of our approach to scenes with changing

numbers of objects, following the generalizability of the

underlying first-order logic.

The cardinality of A and G is constant and independent

from the scene, no matter how many objects are in the

scene. Therefore, through the separation of a into �a and O,

we can input �a and �g directly as a one-hot encoding to the

neural network.

4.3.2. Encoding the objects O and Og in the image

space. For our approach it is crucial to encode the

information about the objects in the scene in a way that

allows the neural network to generalize over objects, i.e.,

the number of objects in the scene and their properties. By

using the separation of the last paragraph, we can introduce

the mapping I : (O, S)7!R
(nc + nO)×w× h, which encodes

any scene S and object tuple O to a so-called action–object

image encoding, namely an nc + nO-channel image of

width w and height h, where the first nc channels represent

an image of the initial scene and the last nO channels are

binary masks which indicate the subset of objects that are

referenced by the action. These last mask channels not only

encode object identity, but substantial geometric and rela-

tional information, which is a key for the predictor to pre-

dict feasible action sequences.

In Figure 1, we show these image encodings for a scene

of the pick-and-place experiment. Figures 1(b) and (c) show

action–object images, whereas Figure 1d shows the goal-

image encoding.

It is important to understand that nO is not the number

of objects in the scene, but the maximal number of objects

that any action refers to. In the experiments, the scene

image is a depth image, i.e., nc = 1 and the maximum num-

ber of objects that a single action refers to is two, hence

nO = 2. If an action takes fewer objects into account than

nO, this channel is zeroed. As the maximum number nO

depends on the set of actions operator symbols A, which

has a fixed cardinality independent from the scene, this is

no limitation. The masks create an attention mechanism

which is the key to generalize to multiple objects (Driess

et al., 2020b). However, because each action object image

I(O, S) always contains a channel providing information of

the complete scene, also the geometric relations to other

objects can be taken into account. This is of crucial impor-

tance as illustrated with the following example. Assume

that the goal location is occupied with an object as in

Figure 1. Visualization of the action–object image encodings I(O, S) for an example test scene of the pick-and-place experiment

from Section 5.2.9 (generalization to multiple objects). (a) Initial scene. (b) Action–object image for grasp action with the left robot

arm and the blue object that occupies the red goal location. (c) Action–object image for place action with the left robot arm

representing placing the blue object on the table. (d) Goal–object and action–object image (for place action) representing placing the

yellow target object on the red goal location. In all images, the first channel is a depth channel of the complete scene. The images

always refer to the initial scene configuration (a). The table mask in (c) covers the complete table, hence is completely white and

indicates that the object should be placed somewhere on the table. Here I1 and I2 correspond to the first two actions chosen by the

network. The network found a solution to solve the task with a sequence of six actions.

Driess et al. 1441

Figure 1. If the action–object image of a place action to

place an other object on the goal location only consisted of

the masks of the target object and the goal, then the net-

work would not be able to reason that this action sequence

is infeasible. Therefore, the purpose of the masks is to

encode object identity of the directly involved objects in an

action, whereas the channel of the whole scene is of great

importance to enable the network to potentially take other

objects into account.

Please note that these action–object images always cor-

respond to the initial scene.

4.4. Network architecture

Figure 2 shows the network architecture that represents p

as a convolutional RNN. Assume that in step k the prob-

ability should be predicted whether an action ak = (�ak ,Ok)
for the goal g = (�g,Og) in the scene S is promising. The

action object images I(Ok , S) as well as the goal object

images I(Og, S) are encoded by a CNN. The discrete

action/goal symbols �a, �g are encoded by fully connected

layers with a one-hot encoding as input. As the only infor-

mation the network has access to is the initial configuration

of the scene, a RNN takes the current encoding of step k

and the past encodings, which it has to learn to represent in

its hidden state hk�1, into account. Therefore, the network

has to implicitly generate its own predictive model about

the effects of the actions, without explicitly being trained to

reproduce some future state. The symbolic goal �g and its

corresponding goal object image I(Og, S) are fed into the

neural network at each step, because it is constant for the

complete task. The weights of the CNN action–object

image encoder can be shared with the CNN of the goal–

object image encoder, because they operate on the same set

of object images. To summarize,

(pp, hk)= pNN(�ak , I(Ok , S), �g, I(Og, S), hk�1)

= p(ak , g, a1:k�1, S):
ð8Þ

4.5. Relation to Q-functions and offline RL

In principle, one can view the way we define p in (4) and

how we propose to train it with the transformation (7) as

learning a goal-conditioned Q-function in a partially obser-

vable Markov decision process (POMDP), where a binary

reward of 1 is assigned if a complete action sequence is

feasible and reaches the symbolic goal. As the learning is

performed based on an offline collected dataset, one can

interpret our work as offline or batch RL.

However, we want to clarify that the decision process

p has to reason about cannot directly be associated with an

underlying continuous state of the manipulation system. A

sequence of discrete actions parameterizes the constraints

of the trajectory optimization problem. These constraints do

usually not fully specify the behavior of the motion within

a phase. Otherwise, no trajectory optimization would be

necessary. Instead, the optimization problem tries to find

the remaining degrees of freedom such that all constraints

implied by the action sequence can globally be fulfilled.

Therefore, the Q-function (and p) should be understood

as a Q-function for the abstract POMDP of making deci-

sions such that a feasible optimization problem is obtained.

Although the symbolic state transition dynamics (1f) is

known through the logic, it is not known a priori whether a

certain choice of actions leads to a feasible optimization

problem without attempting to solve it, i.e., executing the

discrete decisions, which is in parts caused by the fact that

the problems are non-convex.

To illustrate that, we show in Figure 3 the fact that future

discrete actions can change the resulting optimized trajec-

tory in earlier motion phases.

This raises the question which state/action representation

is appropriate for learning such a Q-function for the abstract

decision process, because it has to be conditioned on the

objects in the scene and their geometry. In particular, the

only state information available is the initial scene. Taking

discrete actions does not lead to well-defined new observa-

tions in terms of new input images or robot configurations.

We propose the action–object image sequence as a pow-

erful input representation for such a Q-function for multi-

ple reasons. First, it would not be sufficient to base the

representation on the symbolic state alone, because the

symbolic state does not contain sufficient information, nei-

ther about the geometry of the objects, their geometric rea-

lizations, nor the effects of all past decisions on the NLP.

For example, picking an object up and placing it again on

the same table does not change the symbolic state, but the

resulting continuous state can then be completely different.

Therefore, the history of the symbolic state needs to be

taken into account.

Furthermore, it is difficult to encode the symbolic state

as an input, especially for multiple objects. Therefore, we

implicitly encode the state via the sequence (or history) of

actions. This is not only sufficient, because a sequence of

actions uniquely determines the symbolic state sequence,

but advantageous, because actions explicitly only depend

on a small subset of objects, as compared with the com-

plete symbolic state. However, as discussed previously, the

Figure 2. Proposed neural network architecture.

1442 The International Journal of Robotics Research 40(12-14)

actions also require the complete initial scene information,

which is provided in terms of the image of the whole scene.

The fact that the action–object images contain geometry

information of the scene couples the abstract symbolic

level to the concrete scene instance, making the reasoning

process possible.

In summary, our network has to learn a state representa-

tion for the abstract decision process from the past action–

object image sequence, while only observing the initial

state in form of the depth image of the scene as input, con-

ditioned on the goal.

Through the data transformation (7), we can frame learn-

ing p or the Q-function as a (stable) supervised learning

problem on offline collected data.

4.6. Algorithm

Algorithm 1 presents the pseudocode of how p is integrated

in the tree search algorithm.

The main idea of the algorithm is to maintain the set E

of expand nodes. A node n = s, (�a,O), k, pp, h, nparent
� �

in

the tree consists of its symbolic state s(n), action–object

pair (�a,O)(n), depth k(n), i.e., the current sequence length,

the prediction of the neural network pp(n), the hidden state

of the neural network h(n), and the parent node nparent(n).
We write �(n) to denote an entry of the node tuple.

At each iteration, the algorithm chooses the node n�E of

the expand set where the network has the highest prediction

(line 5), i.e., where the network predicted that choosing this

action leads to an overall feasible solution for the task goal

g in the future. For all possible next actions, i.e., children of

n�E, the network is queried to predict their probability lead-

ing to a feasible solution, which creates new nodes (line

10).

If a child node reaches a symbolic goal state (line 11), it

is added to the set of leaf nodes L, otherwise to the expand

set.

Then those already found leaf nodes from the set L are

investigated. This set of leaf nodes contains the candidates

for a feasible solution whose corresponding trajectory opti-

mization problems have not yet been solved and checked

for feasibility (L is related to a subset of T (g, S)). In line

18, the algorithm chooses the leaf node n�L from L with the

highest prediction of the neural network as the first for

which the trajectory optimization problem is solved (line

25). If the NLP P (�a,O)1:K(n
�
L), (�g,Og), S

� �
corresponding

to the action sequence of the leaf node n�L is feasible, a

solution of the overall TAMP problem in terms of the tra-

jectory x = argP (�a,O)1:K (n
�
L), (�g,Og), S

� �
in the config-

uration space X is found. If it is not feasible and there are

still nodes in L, the one with the highest prediction of the

remaining ones is tested for feasibility by solving the

Figure 3. Illustration that the behavior of the optimized trajectory is only fully defined for a complete sequence of discrete actions.

(a) Action sequence grasp(R Oyellow), grasp(L Oblue), (b) Action sequence grasp(R Oyellow), grasp(L Oblue), place(L Oblue Ogoal). Both

(a) and (b) have the same first two discrete actions. However, in (b) (bottom row), the fact that there is a third discrete action

influences the trajectory in the past (third image from the left). This is because the actions impose constraints that only partially

determine the motions. The optimizer then tries to find a motion that is globally consistent with all constraints. Hence, the yellow

object is moved away from the goal location already in the second phase of the motion although no discrete action explicitly told it to

do so. Further, one can also see that although in the first motion phase (second image from the left) only constraints for grasping the

yellow object are present, the left arm is already moving.

Driess et al. 1443

corresponding NLP. Otherwise, the expansion of the tree

continues up to a maximum sequence length Kmax.

4.6.1. Feasibility threshold and completeness of the

algorithm. As during the expansion of the tree, leaf nodes

which are unlikely to be feasible are also found, only those

trajectory optimization problems are solved where the pre-

diction pp is higher than the feasibility threshold fthresh (set

to 0.5 in the experiments). Otherwise, if the highest predic-

tion in the set L is below this threshold, the investigation of

the leaf nodes is stopped (lines 19 and 21) until new leaf

nodes are found in the expansion step.

This greatly reduces the number of NLPs that have to be

solved, because the information provided by the network is

not only used to guide the tree search to find promising leaf

nodes quickly, but also to discard leaf nodes that are pre-

dicted to be infeasible by the network.

However, one cannot expect that the network never erro-

neously has a low prediction although a leaf node would be

feasible. In order to prevent not finding a feasible solution

in such cases, the function adjustFeasibilityThreshold(�)
(line 20) reduces this threshold with a discounting factor

g\1, i.e., fthresh ! g � fthresh, or sets it to zero if all leaf

nodes with a maximum depth of Kmax have been found.

This allows us to provide a completeness guarantee of the

algorithm, under the following assumption.

Assumption 1. If a scene for a given goal contains at least

one action sequence up to a maximum length Kmax that

corresponds to a feasible nonlinear program, the trajectory

optimizer numerically converges to a feasible solution for

that action sequence.

Proposition 1. Under Assumption 1, Algorithm 1 is

complete.

Proof. Clear by construction of Algorithm 1 and the feasi-

bility threshold discounting through adjustFeasibility
Threshold(�). �

This means that if a scene contains at least one action

sequence that reaches the symbolic goal for which the non-

linear trajectory optimizer can find a feasible motion,

Algorithm 1 finds this solution. In particular, the neural

network does not prevent finding a solution, even in case

of prediction errors. Another way to interpret Proposition 1

is that the network p together with the threshold mechan-

ism is a goal-conditioned admissible heuristic for a tree

search algorithm.

In Assumption 1 we assumed a maximum sequence

length Kmax to be given for which the task can be solved.

If Kmax is not known, one can simply wrap Algorithm 1 in

an outer loop that increases Kmax and add a stopping cri-

teria for line 4 when Kmax is reached. Then Algorithm 1 is

also complete for an unknown Kmax.

If we set fthresh to a negative value, then the algorithm is

automatically complete without the adjustment of the

threshold, under the penalty of potentially solving unneces-

sary NLPs by not exploiting all the information p can pro-

vide. In the experiments in Section 5.2.8, we investigate

the influence of the threshold and its adjustment both on

completeness and performance.

4.6.2. Implementation. As an important remark, for the

implementation we store the hidden state of the RNN in its

corresponding node. Furthermore, the action–object images

and action encodings also have to be computed only once,

because all action–object images correspond to the initial

scene configuration. Therefore, during the tree search, only

one pass of the recurrent (and smaller) part of the complete

pNN has to be queried for each new child node, which is

very fast.

4.7. Comparative alternative: goal-independent

recurrent feasibility classifier

The methods of Driess et al. (2020b) and Wells et al.

(2019) learn a feasibility classifier for single actions only,

i.e., independent of a goal, and do not consider sequences.

To allow for a comparison, we present in this section an

approach to extend the idea of a feasibility classifier to

Algorithm 1 LGP with Deep Visual Reasoning

1: Input: Scene S, goal g and max sequence length Kmax

2: L = ; 8set of leaf nodes
3: E = fn0g 8set of nodes to be expanded, n0 is root node
4: while no solution found do

. choose node from expand set with highest prediction
5: n�E = argmax

n2E^k(n)\Kmax

pp(n)

6: E Enfn�Eg
7: for all (�a,O) 2 AO(s(n�E), S) do

8: (pp, h)= pNN �a, I(O, S), �g, I(Og, S), h(n
�
E)

� �
9: s = succ(s(n�E), (�a,O)), k = k(n�E)+ 1

10: n = s, (�a,O), k, pp, h, n
�
E

� �
8new node

11: if s 2 Sgoal(g) then

12: L L [fng 8if goal state, add to leaf node set
13: else
14: E! E [nf g 8if no goal state, add to expand set
15: end if
16: end for
17: while jLj.0 do 8consider already found leaf nodes

. choose node from leaf node set with highest prediction
18: n�L = argmax

n2L

pp(n)

19: if pp(n
�
L)ł fthresh then

20: fthresh adjustFeasibilityThreshold(fthresh)
21: break
22: end if
23: L Lnfn�Lg
24: (�a,O)1:K = (�a,O)1:k(n�

L
)(n
�
L) 8extract action seq.

25: solve NLP x = argP (�a,O)1:K , (�g,Og), S
� �

26: if feasible, i.e., FS((�a,O)1:K)= 1 then
27: solution (�a,O)1:K with trajectory x found
28: break all and return solution x, (�a,O)1:K
29: end if
30: end while
31: end while

1444 The International Journal of Robotics Research 40(12-14)

action sequences and how it can be integrated into our

TAMP framework.

The basic idea is to classify the feasibility of a motion

planning problem that results from an action sequence with

a recurrent classifier, independently from and agnostic to a

goal. In this way, during the tree search, solving an NLP as

a lower bound to guide the search can be replaced by evalu-

ating the classifier, which usually is order of magnitudes

faster. Formally, we seek to learn a function that, given a

scene description S and the past decisions a1:K�1, predicts

whether choosing an action aK at the time step K leads to a

feasible NLP for the resulting action sequence a1:K

pRC aK , a1, . . . , aK�1, Sð Þ= p(FS a1:Kð Þ= 1jS): ð9Þ

This is independent from the overall goal of the TAMP

problem. Instead, pRC should predict the feasibility for

arbitrary action sequences a1:K of different lengths K. As it

therefore also operates on subsequences that do not reach

the symbolic goal yet, querying pRC can be interpreted as

a heuristic that has a similar role as the lower bounds to

guide the tree search. Note that this classifier is slightly dif-

ferent to a discriminative model that is trained only on com-

plete goal-reaching sequences.

Regarding the dataset for training such a classifier,

assume that we have sampled a scene Si and a goal-

reaching action sequence ai
1:Ki 2 T (g, S). Then we include

in the dataset not only the feasibility of

Si, ai
1:Ki ,FSi(a1:Ki)

� �
, but also the feasibility of the subse-

quences up to ~Ki ł Ki, i.e.,

DRC =
[n
i = 1

[~Ki

j = 1

Si, ai
1:j,FSi(j)

� 	n o
ð10Þ

with

Fi
Si (j)= FSi ai

1:j

� 	
ð11Þ

where FSi(0)= 1 and the index

~Ki = maxfj ł Ki :

Fi
Si(j)= 1 _ Fi

Si(j� 1)= 1 ^ Fi
Si(j)= 0

� �
g:
ð12Þ

Superscripts here denote dataset indexing. For the actual

implementation, we basically choose the same architecture

as for pNN, but pRCNN
only takes the current action–object

image pair as well as the hidden state of the previous step

as input and predicts whether the action sequence up to this

step is feasible, i.e.,

pRCNN
�ak , I(Ok , S), hk�1ð Þ= pRC aK , a1, . . . , aK�1, Sð Þ:

ð13Þ

Section 5.2.6 presents an empirical comparison of this

recurrent classifier with the goal-conditioned predictor

pNN.

4.8. Predicting trajectory cost

So far, we were only interested in finding a feasible action

sequence. The full LGP formulation (1), however, seeks

not only for feasibility, but also optimality with respect to

the trajectory costs measured by the function c in (1a). For

typical pick-and-place scenarios as considered in Section

5.2, the trajectory costs penalize accelerations of the robot

joints. Therefore, the trajectory costs mainly depend on the

action sequence length K. Owing to the way the network is

integrated into the tree search algorithm, cf. Section 4.6

and Algorithm 1, it empirically turned out that in many

cases the network already finds solutions with low costs.

However, for the more dynamic pushing experiment of

Section 5.3, there can be more significant differences in the

trajectory costs even for action sequences of the same

sequence length. Therefore, we present in this section a

simple modification of the network and especially the train-

ing targets to enable the network to predict the expected tra-

jectory cost for an action sequence. This way, we can utilize

the network to find more cost optimal solutions compared

to the case where we only take feasibility into account.

Let P(a1:K , g, S) denote the cost of the NLP (1) when fix-

ing the action sequence a1:K . In order to represent infeasibility

as a finite value, we exponentiate the cost, hence an infeasible

sequence has a value of exp (� ‘)= 0. Therefore, the net-

work, which we call cost prediction pcost, should be trained

to predict for the scene S, the goal g, and the past decisions

a1:k�1 at step k of the sequence whether an action ak is pro-

mising in the sense of there exist future actions ak + 1:K such

that the complete sequence a1:K not only leads to a feasible

solution, but also the minimum achievable cost of a complete

future sequence when following ak , i.e.,

pcost ak , g, a1, . . . , ak�1, Sð Þ=
max
ak + 1:K

exp (� P(a1:K , g, S))

s:t: FS a1:Kð Þ= 1

a1:K 2 T g, Sð Þ:

ð14Þ

The training targets of the i th data point for this network

are now a sequence of positive values f i 2 R
Ki

ø 0, where

their j th component f i
j ø 0 is defined as

f i
j = max

Sl, al
1:Kl , g

l,Fl
� �

2 Ddata

Fl = FSl al
1:Kl

� �
= 1

gl = gi

al
1:j = ai

1:j

exp (� P(al
1:Kl , g

l, Sl))

ð15Þ

If there exists no future feasible action sequence when

taking ak or a1:k is already infeasible, f i
j = 0, because we

defined P(a1:K , g, S)= ‘ for an infeasible action sequence.

Analogously to the discussion in Section 4.5, the role of

pcost is very similar to the cost-to-go prediction expressed

by a Q-function, where there are only terminal costs (the

Driess et al. 1445

costs of the trajectory optimization problem for a complete

action sequence). Instead of performing Q-iteration, we cal-

culate this cost-to-go on the dataset explicitly, which leads

to a stable supervised learning problem. Although the fea-

sibility network pNN has a sigmoid output and is trained

with a weighted binary cross-entropy loss, the cost predic-

tion network pcost has a linear output and is trained with a

squared error loss. The network architecture, i.e., especially

the input encoding and the recurrent structure, of pNN and

pcost is the same, with the only difference of the output, as

mentioned.

When integrating pcost in the tree search algorithm, the

exact same algorithm as for the feasibility network can be

used. However, the notion of the feasibility threshold fthresh
and its adjustment (lines 19 and 20 in Algorithm 1) has to

be changed slightly to reflect the fact that the outputs of

pcost are now not probabilities but negatively exponentiated

costs and a value of zero corresponds to infeasibility.

Therefore, if pcost is below a certain value, the sequence is

classified as infeasible.

5. Experiments

We demonstrate our proposed framework on two different

tasks. Please also refer to Extension 1 that demonstrates the

planned motions both in simulation and with a real robot.

For the first experiment, presented in Section 5.2, we con-

sider a typical kinematic pick-and-place TAMP problem

where two robot arms have to collaborate to solve the tasks.

We investigate the generalization capabilities of our approach

to more objects in the environment than during training.

In the second experiment (Section 5.3), we show that the

method can also be applied to tasks that involve dynamic

models. More specifically, we demonstrate a tool-use sce-

nario where the robot has to use a hook-shaped object to

push and/or pull an object to a desired target location.

As a general remark, the quantitative results are visua-

lized using boxplots that show the median, the upper and

lower quartiles as well as whiskers. The whiskers in all box-

plots correspond to datapoints that are nearest to 1.5 times

the interquartile range (IQR). When we obtained time mea-

surements, we ensured to run them on the same machine

which did not compute anything else at the time. All experi-

ments in Section 5.2 that report run times have been per-

formed with an Intel Xeon W-2145 CPU @ 3.70 GHz,

whereas in Section 5.3 they were run with an Intel Xeon

E5-2630v4 CPU @ 2.20 GHz.

5.1. Network details

Both experiments share the same network architecture with

the same hyperparameters. The network is trained with the

ADAM optimizer (learning rate 0.0005) with a batch size

of 48 for the pick-and-place experiment and 40 for the

pushing experiment. To account for the aforementioned

imbalance in the dataset, we oversample feasible action

sequences such that at least 16 out of the 48 samples in

one batch come from a feasible sequence for the pick-and-

place experiment (8 out of 40 for the pushing one). More

specifically, 32 are sampled without replacement from the

whole dataset, whereas the additional 16 (or 8) are solely

sampled from the feasible ones with replacement. We addi-

tionally weight the feasible samples in the loss function

with a weight of 2. In general, accounting for the imbal-

ance with this oversampling turned out to be crucial for the

performance. However, there was no extensive tuning of

hyperparameters necessary at all.

The image encoder consists of three convolutional layers

with 5, 10, and 10 channels, respectively, and filter size of

5× 5. The second and third convolutional layers have a

stride of 2. After the convolutional layers, there is a fully

connected layer with an output feature size of 100 and lin-

ear activation. The inner layers are followed with rectified

linear unit (ReLU) activations. The same image encoder

with shared weights is used to encode the action images

and the goal image. The discrete action encoder is one fully

connected layer with 100 neurons and ReLU activations.

The recurrent part consists of one layer with 300 GRU

cells, followed by a linear layer with output size 1 and a

sigmoid activation as output for p or linear activation for

pcost. Except for the output, p and pcost have the exact

same architecture. As the task is always to place an object

at or to push it to varying locations, we left out the discrete

goal encoder in the experiments presented here.

5.2. Pick-and-place experiment

For the first experiment, we consider a tabletop scenario

with two robot arms (Franka Emika Panda) and multiple

box-shaped objects, see Figure 1a, 4, or 5 for typical

scenes, in which the goal is to move an object to different

target locations. The target locations are visualized by red

squares in these figures.

5.2.1. Action operators and optimization objectives. The

logic language is defined by rules similar to PDDL (Planning

Domain Definition Language). For the pick-and-place experi-

ment, there are two action operators grasp(R h O) and

place(R Oa Ob).

The grasp action takes as parameters the robot arm

R 2 fleft,rightg, one of four integers h 2 f1, 2, 3, 4g,
and a (single) box-shaped object O 2 P(O(S)) that should

be grasped. A precondition ensures that O is an object. The

robot arm and integer assignment are represented in the

discrete action symbol �a, leading to eight different discrete

action symbols �a for the grasp action. As discussed in

Section 4.3, the object O is encoded in the action–object

image I(O, S). See also Figure 1 for a visualization of the

action–object images for the two action operators. The

grasp action imposes the following constraints on the

phase of the trajectory where it is active. The end-effector

R is always aligned vertically to the box. Depending on the

integer, the grippers are additionally aligned in parallel to

1446 The International Journal of Robotics Research 40(12-14)

different surfaces of the box through two equality con-

straints. Furthermore, an inequality constraint ensures that

the center point between the two grippers of the end-

effector is inside of the object with a margin. In this work,

we only consider grasps from the top, leading to four dif-

ferent discrete ways of grasping a box from the top. Figure

6 visualizes these four discrete ways of grasping for one

robot arm. One might think that only two of the four grasps

(the first and third from the left in Figure 6) are necessary

for symmetry reasons. However, owing to the kinematic

limits of the robot arms, all four are indeed required for this

task. The coordinate system to define the alignments is

defined from a robot perspective, which avoids symmetry

issues of the box looking the same in the image if rotated

by, e.g., 1808 and therefore uniquely defines each discrete

grasp type.

Note that the exact grasping location in two degrees of

freedom relative to the object is not defined completely by

the grasp action and therefore subject to the optimizer.

Handover motions are just two consecutive grasp actions,

for which the optimizer takes care of finding a suitable

handover pose, if a handover is feasible. As seen, for exam-

ple, in Figure 4b, when an object should be grasped by

only one arm, then the optimizer grasps it in the middle of

the object. In contrast, for a handover, as seen in Figure 4e,

the fact that there are two consecutive grasp actions on the

same object in the action sequence leads to the first grasp

to happen near the boundary of the box to allow the other

arm to grasp the box later during the handover as the sec-

ond grasp. This capability for generating handovers is

Figure 4. Typical scene of the pick-and-place experiment: (a) initial scene from which the image is captured; (b) action 1 (grasp),

remove occupying object; (c) action 2 (place); (d) action 3 (grasp); (e) action 4 (grasp), handover; (f) action 5 (place), goal achieved.

The yellow object should be placed on the red spot, which is, however, occupied by the blue object. Furthermore, the yellow object

cannot be reached by the robot arm that is able to place it on the red spot. Therefore, the two arms have to collaborate to solve the

task. In this case, the network decides for a handover solution.

Figure 5. Training scene example of the pick-and-place

experiment. The sizes, positions, and orientations of the two

boxes as well as the target location (red spot) are sampled

randomly. Here the green box should be placed on the red spot.

Driess et al. 1447

another reason why p is not a standard Q-function (see the

discussion in Section 4.5).

Finally, the grasp action imposes the constraint on the

relative velocity between the end-effector and the object to

be zero, modeling a stable grasp, during the time it is

active.

The place action has as parameters the robot arm

R 2 fleft,rightg as well as two objects Oa and Ob,

(Oa,Ob) 2 P(O(S)). The robot arm again is expressed in

the discrete action symbol �a, i.e., there are two place
action symbols. The object Ob on which Oa should be

placed is encoded in the action–object image

I((Oa,Ob), S). The effects of the place action on the opti-

mization objectives are that the bottom surface of the

object Oa touches and is parallel to Ob. In our case, we

have preconditions that Oa is a box and Ob is a table or the

goal location (although this is not strictly necessary).

Similar to the grasp action, the place action does not

specify where exactly to place the object. It is only speci-

fied that it should be placed somewhere on the Ob. The

optimizer then chooses a placement position that is consis-

tent with the other constraints imposed by the past and

future actions in the sequence, see, for example, Figure 4c.

Preconditions for grasp and place ensure that one

robot arm attempts to grasp only one object simultaneously

and that an arm can only place an object if it is holding

one.

Path costs c penalize squared accelerations of the robot

joints of the path x. Finally, there are collisions and joint

limits as inequality constraints with no margin.

In total, jAj= 10, i.e., there are 10 discrete actions oper-

ator symbols. The number of objects and therefore the

search space over the action sequences or the size of the

LGP tree depends on the number of objects jO(S)j in the

scene (Table 1).

5.2.2. Properties of the scene. There are multiple proper-

ties which make this (intuitively simple) task challenging

for TAMP algorithms. First, the target location can fully or

partially be occupied by another object. Second, the object

and/or the target location can be out of reach for one of the

robot arms. Hence, the algorithm has to figure out which

robot arm to use at which phase of the plan and the

two robot arms possibly have to collaborate to solve the

task. Third, apart from position and orientation, the objects

vary in size, which also influences the ability to reach or

place an object. In addition, grasping box-shaped objects

introduces a combinatorics that is not handled well by non-

linear trajectory optimization due to local minima and also

joint limits. Therefore, as described in the last paragraph,

we introduce integers as part of the discrete action that

influence the grasping geometry. This greatly increases the

branching factor of the task. For example, depending on

the size of the object, it has to be grasped differently or a

handover between the two arms is possible or not, which

has a significant influence on the feasibility of action

sequences.

Indeed, Table 1 lists the number of action sequences

with a certain length that lead to a symbolic goal state over

the number of objects in the scene. This number corre-

sponds to candidate sequences for a feasible solution (the

set T g, Sð Þ) which demonstrates the great combinatorial

complexity of the task, not only with respect to sequence

length, but also number of objects. Only a very small sub-

set of these candidate sequences actually correspond to a

feasible trajectory optimization problem, cf. Section 5.2.3.

Furthermore, it also shows that one cannot expect to gener-

ate a dataset which covers the complete search tree for a

single scene configuration. This means that a dataset can

neither contain a dense coverage of the scene variation, nor

all possible action sequences for each individual scene.

One could argue that an occupied and reachability predi-

cate could be introduced in the logic to reduce the branch-

ing of the tree. However, this requires a reasoning engine

which decides those predicates for a given scene, which is

not trivial for general cases. More importantly, both reach-

ability and occupation by another object is something that

is also dependent on the geometry of the object that should

be grasped or placed and, hence, not something that can be

precomputed in all cases (Driess et al., 2020b, 2019b). For

example, if the object that is occupying the target location

is small and the object that should be placed there as well,

then it can be placed directly, whereas a larger object that

should be placed requires to first remove the occupying

object. Our algorithm does not rely on such non-general

simplifications, but decides promising action sequences

based on the real relational geometry of the scene, encoded

in the action–object images and the goal image.

5.2.3. Training/test data generation. We generated 30,000

scenes randomly with two objects present at a time. The

sizes, positions, and orientations of the objects as well as

the target location are sampled uniformly within a certain

range. In total, the parameter scene space is 14-dimen-

sional. See Figure 5 for an example of a typical training

scene. For half of the scenes, one of the objects (not the

one that is part of the goal) is placed directly on the target,

to ensure that at least half of the scenes contain a situation

where the target location is occupied. The dataset Ddata is

Figure 6. The four different integer assignments of the grasp
operator for the pick-and-place experiment. The gripper is always

aligned vertically to the box, but the integers determine which of

the side of the box the grippers are parallel to. Owing to the

kinematic limits, all four ways have to be included.

1448 The International Journal of Robotics Research 40(12-14)

determined by a breadth-first search for each scene over

the action sequences, until either 4 solutions have been

found or 1,000 leaf nodes have been considered. In total,

for 25,736 scenes at least one solution was found, which

were then the scenes chosen to create the actual training

dataset Dtrain as described in Section 4.2. A total of

102,566 of the action sequences in Ddata that reach the

symbolic goal were feasible, 2,741,573 completely infeasi-

ble. This shows the claim of the introduction and Section

5.2.2 that the majority, namely 96.4%, of the candidate

action sequences are actually infeasible. Furthermore, such

an imbalance between feasible and infeasible sequences

imposes difficulties for a learning algorithm. With the data

transformation from Section 4.2, there are 7,926,696 fj = 0

and 1,803,684 fj = 1 training targets in Dtrain, which is

more balanced. Still, as mentioned in Section 5.1, oversampling

the feasible action sequences was necessary to ensure that

enough fj = 1 training targets are presented to the network.

To evaluate the performance and accuracy of our

method, we sampled 3,000 scenes, again containing 2

objects each, with the same algorithm as for the training

data, but with a different random seed. Using breadth-first

search, we determined 2,705 feasible scenes, which serve

as the actual test scenes.

5.2.4. Performance: results on test scenarios. This section

presents the performance of our network when integrated

into the tree search algorithm to find solutions for the 2,705

test scenarios that contain 2 objects each.

Figure 7 shows both the total runtime and the number

of NLPs that have to be solved to find a feasible solution.

When we report the total runtime, we refer to everything,

meaning capturing the image, computing the image/action

encodings, querying the neural network during the search

and the time for all involved NLPs that are solved. As one

can see in Figure 7b, for all cases with sequence lengths of

2 and 3, the first predicted action sequence is feasible, such

that there is no search necessary and only one single NLP

has to be solved. For length 3, the median is still 1, but also

for sequences of lengths 5 and 6 in half of the cases less

than 2 NLPs have to be solved.

In general, with a median runtime of about 2.3 s for even

sequence length of 6, the overall framework with the neural

network has a high performance and the task can be solved

in reasonable runtime. Furthermore, the upper whiskers are

also below 7 s.

Of the 2,705 test scenes, in 35% of the cases the net-

work finds a solution with sequence length 2, in 18% of

length 3, in 27% of length 4, in 7% of length 5, and in 13%

of length 6. Therefore, it is important that we report the run-

times and the number of solved NLPs separated as a function

of the sequence length. Otherwise, the simpler cases of

sequence length 2 and 3, where there is a smaller combinator-

ial complexity, would cover 53% of all test scenarios. This

allows us to show that also for the harder cases of sequence

length 5 and 6, which are only 20% of the test scenes, the net-

work performs well.

5.2.5. Comparison with multi-bound LGP tree

search. Here we compare the performance of multi-bound

LGP tree search that utilizes the lower bounds from Toussaint

and Lopes (2017) as heuristics to guide the search with our

proposed framework where the network acts as a heuristic or

ideally directly predicts a feasible action sequence.

In Figure 8a the runtimes for solving the test cases with

LGP tree search are presented, which shows the difficulty

of the task. In 132 out of the 2,705 test cases, LGP tree

search is not able to find a solution within the timeout,

compared with only 3 times when we use our proposed

framework with the neural network.

Figure 7. Performance on test scenarios for pick-and-place experiment (two objects in the scene) with neural network integrated into

the tree search algorithm: (a) total time to find a feasible solution; (b) number of NLPs that have to be solved to find a solution. As

can be seen in (b), in many cases only a single NLP has to be solved or 2 (median) for more challenging tasks that require action

sequence lengths of 5 and 6.

Driess et al. 1449

Figure 8b shows the speedup that is gained by using the

neural network. For sequence length 4, the network is 46

times faster, 100 times for length 5, and for length 6 even

705 times faster (median). In this plot, only those scenes

where LGP tree search and the neural network have found

solutions with the same sequence lengths are compared,

which is the case in 78% of the test scenes. This means that

especially for the difficult cases, where it is most relevant,

utilizing the network also leads to a significant speedup.

5.2.6. Comparison with the recurrent classifier. Figure 9a

shows a comparison of our proposed goal-conditioned net-

work that generates sequences with the recurrent classifier

described in Section 4.7 that only predicts the feasibility of

an action sequence, independent from the task goal. As one

can see, although such a classifier also leads to a significant

speedup compared with LGP tree search, our goal-

conditioned network has an even higher speedup, which also

stays relatively constant with respect to increasing action

sequence lengths. Furthermore, with the classifier 22 solu-

tions have not been found, compared with 3 with our

approach within the timeout. Although the network query

time is neglectable for our network, as can be seen in Figure

9b, the time to query the recurrent classifier becomes visible.

Indeed, one can see the exponential increase in the network

query time for increasing sequence lengths. This is caused

by the fact that without goal conditioning, the network has

to be queried much more often, because it can only assess

the feasibility of an action sequence up to the point it has

been queried without the ability to judge whether it eventu-

ally leads to the goal. Therefore, the speedup compared with

LGP tree search with the recurrent classifier is achieved by

replacing the analytically defined lower bounds which can,

especially if the problem is infeasible, take up to several sec-

onds to compute, with a learned model acting as a lower

bound that is not only much faster to evaluate, but also has a

constant query time. The goal conditioning of our proposed

framework does not show this exponential increase for lon-

ger sequence lengths, because it directly guides the search

towards achieving the goal.

5.2.7. Data efficiency. One could argue that the 25,736

scenes used for training are a high number of scenes for this

task. However, one also has to take into account that the

parameter space from which the scenes are sampled is 14-

dimensional, which means that the training set does not

cover this space densely at all. Nevertheless, we trained our

proposed network on a subset of 4,442 and 8,090 scenes of

the original training dataset. In Figure 10, we report the

number of solved NLPs to find a solution for the networks

that are trained on 4,442, 8,090, and 25,736 scenes, split

over the length of the found action sequence. As one can

see, the median is the same for all networks. For longer

sequence lengths of 5 and 6, the upper quartiles and the

upper whiskers for the networks trained on the smaller data-

sets increase. Nevertheless, this experiment shows that with

nearly six times less data, one still achieves a high perfor-

mance, which is also still orders of magnitudes better than

without the network.

5.2.8. Feasibility threshold and completeness. In Section

4.6, we have discussed how the network can be integrated

into the tree search algorithm without preventing a solution

being found if one exists even in case of prediction errors

of the network. This is achieved by adjusting the feasibility

threshold with a discounting factor g = 0:9 if the network

suggests to not consider a found leaf node as a promising

solution candidate. Another way to realize this is to remove

the feasibility threshold and just compute every NLP corre-

sponding to a found leaf node. Here we investigate the per-

formance impact of these strategies.

Figure 8. Comparison of our framework with the neural network to multi-bound LGP tree search that relies on computing lower

bounds to guide the search: (a) total time with LGP to find a feasible solution; (b) speedup gained when using our proposed network

over multi-bound LGP tree search. The speedup in (b) is the solution time with multi-bound LGP tree search divided by the solution

time with the neural network. Test scenes of pick-and-place experiment with two objects in the scene.

1450 The International Journal of Robotics Research 40(12-14)

Figure 11 shows the total solution time to find a feasible

solution with the network when using the feasibility thresh-

old together with the adjustment of the threshold (blue),

which is our proposed approach, the case without the

adjustment (red), which implies that solutions can be

missed in case of prediction errors, and the case where

there is no threshold at all (green).

As can be seen, the case without the threshold has the

highest runtime, whereas the case with the threshold but no

discounting has the lowest runtime. However, our proposed

approach with the threshold and the discounting (blue) has

only a non-significant difference to the case with threshold

but no discounting. Even without the threshold, the perfor-

mance is also very good, although clearly worse than with

our proposed approach.

As we discussed in Proposition 1, the approach with

adjusting the feasibility threshold guarantees that a solution

can be found if it exists. Indeed, in only 3 of the 2,705 test

cases, no solution was found with this method within the

timeout. The fact that this number is not zero is due to the

timeout. If we increase the timeout, then indeed a solution

for all test cases was found. The same holds true for the

case without the threshold, i.e., for the initial timeout 3

were not found, then with the increased timeout all were.

However, even if we increased the timeout, still in 5 test

cases no solution was found when using the threshold with-

out the adjustment mechanism.

For the networks that have been trained on a smaller

dataset (Section 5.2.7), adjusting the feasibility threshold

turned out to be even more important. Without the feasibil-

ity adjustment, the network trained on 4,442 (8,090) scenes

did not find a solution in 30 (17) cases. In contrast, with the

feasibility adjustment, the networks trained on the smaller

datasets did not find a solution in only 2 (1) cases. When

increasing the timeout, always a solution was found in the

latter case.

To summarize, the feasibility threshold adjustment pre-

sented in Section 4.6.1 maintains completeness, while

showing very little performance penalty.

The threshold in the experiments was fthresh = 0:5 and

the discounting g = 0:9.

5.2.9. Generalization to multiple objects. Creating a rich

enough dataset containing combinations of different num-

bers of objects is infeasible. Instead, we now take the net-

work that has been trained as described in Section 5.2.3

Figure 9. Comparison of recurrent classifier (orange) to our proposed goal-conditioned network (blue) for pick-and-place experiment

on test scenes with two objects in the scene: (a) total time to find a feasible solution with recurrent classifier; (b) total, i.e., summed

up, time to query the networks to find a solution for a scene (part of the total solution time of (a)). Although the recurrent classifier is

competitive compared to LGP tree search (see Figure 8a), one can see the exponential increase in the runtime for longer sequence

lengths. In contrast, the runtime with our proposed framework increases much less for longer sequence lengths.

Figure 10. Investigation of the data efficiency. Number of

solved NLPs to find an overall feasible solution for the test

scenes with neural network integrated into the tree search

algorithm for networks trained on different numbers of training

scenes. Pick-and-place experiment. The median is the same for

all networks.

Driess et al. 1451

with only two objects present at a time and test whether it

generalizes to scenes with more than two (and also only

one) objects. The 200 test scenes are always the same, but

more and more objects are added. In Figure 1a and 12, such

test scenes with 4 and 5 objects are shown.

Figure 13 reports the total runtime to find a feasible

solution with our proposed neural network over the number

of objects present in the scene. These runtimes include all

scenes with different action sequence lengths. In all cases a

solution was found. Although the upper quartile increases,

the median is not significantly affected by the presence of

multiple objects.

The observation that the runtime increases for more

objects is not only caused by the fact that the network inev-

itable makes some mistakes and, hence, more NLPs have to

be solved. Solving (even a feasible) NLP with more objects

can take more time due to increased runtime costs for colli-

sion queries and increased non-convexity of the optimiza-

tion landscape.

In general, the performance is remarkable, especially

when observing that the network was able to find solutions

for scenes with many objects in a reasonable amount of

time for sequence length 6, where, according to Table 1,

nearly half a million possible action sequences for 5 objects

in the scene exist.

To further demonstrate the advantages of the network

when generalizing to multiple objects, in Figure 14, we

compare the proposed approach to multi-bound LGP tree

search. We split the evaluation between scenes that have

been solved with action sequence lengths of 2 or 3 (Figure

14a) and 4, 5, or 6 (Figure 14b). For the more challenging

scenes requiring sequence lengths 4, 5, or 6, the runtime is

between 2 and 3 orders of magnitudes smaller with the net-

work. Note that the runtimes in Figure 14 for LGP are only

reported for those where LGP was able to find a solution

within the timeout. As indicated in Table 2, for the challen-

ging scenes that require action sequence length 6, if the

scene contains 3 objects, then in only 6% of the cases the

network was able to find a solution within the timeout. If

the scene contains 4 or 5 objects, then LGP without the net-

work was not able to solve a single scene within the time-

out. Therefore, the runtime results in Figure 13 are in favor

of LGP. As mentioned, with our proposed approach, in all

cases a solution was found.

These results emphasize that the capability of the net-

work to reason about which objects are relevant to solve the

task is crucial, even if only two objects have to be manipu-

lated. Therefore, the network shows important generaliza-

tion capabilities to multiple objects.

5.2.10. Generalization to more objects to be manipulated

and longer sequence lengths. In the last section, we have

shown that the network is able to generalize to more objects

in the scene than it has been trained on. In those scenes, it

was, however, sufficient to manipulate two objects to solve

the task, as in the training distribution. As increasing the

number of objects in the scene increases the number of can-

didate action sequences significantly, determining the rele-

vant objects is, as we have shown, an important capability

of the network to maintain high performance when general-

izing to multiple objects.

Going beyond that, the question arises if the network is

also useful in situations where more than two objects have

Figure 11. Performance on test scenarios depending on the

feasibility threshold strategy for the pick-and-place experiment

(two objects in the scene) with neural network integrated into the

tree search algorithm. Blue is our proposed approach that

combines the advantages of using the feasibility threshold for

performance while maintaining completeness.

Figure 12. Example scenes for generalization to multiple objects (pick and place experiment). Object colors have no meaning.

1452 The International Journal of Robotics Research 40(12-14)

to be manipulated to solve the task. We do not expect the

network to generalize to these settings with the same per-

formance as in the other experiments.

In order to investigate this question, we generated five

test scenes where not only the goal is obstructed by an

object, but also the target object that should be placed on

the goal cannot be grasped directly because another object

is placed in a way that prevents grasping. See Figure 15a

for an example scene. We call this experiment 1 in the fol-

lowing. This means that all three objects have to be manipu-

lated to solve the task. Further, we generated three test

scenes (see Figure 15b for an example) where, more chal-

lenging, the objects are placed in a way such that at least

eight discrete actions are necessary due to the reachable set

of the robot arms (and, hence, they have to collaborate). We

call this experiment 2 in the following. These numbers of

test scenes are not as statistically significant as the evalua-

tions presented in the other parts of this work. This is due

to the fact that randomly sampling scenes where three

objects have to be manipulated is unlikely given our data-

generation method. Therefore, we created these test scenes

manually, without any bias to their solvability for the

method.

Table 3 presents the runtimes for this generalization

experiment for all scenes individually. We increased the

timeout by a factor of 10 for this experiment compared

with the others. Out of the five scenes for experiment 1, in

four cases a solution was found using our network within

the timeout. LGP was also able to find a solution for these

four cases. Regarding experiment 2, in all three test scenes

a solution was found with our network, whereas LGP was

not able to find a solution for two of the three cases.

Although the network for these scenes cannot reduce

the number of optimization problems that have to be solved

as much as in the other experiments, in comparison with

LGP, the speedup between 10 and 932 is still remarkable

and the network makes it possible to solve some scenes at

all. There are scenes where the task could be solved in less

than 10 s with the network, but others can take of the order

of hours. Therefore, the network acts as a heuristic to speed

up the search, but does not eliminate it.

The column ‘‘pNN with bound’’ is a slight variant of our

proposed algorithm where the bound P1 (cf. Section 3.2) in

line 5 of Algorithm 1 is computed to check whether a

selected node from the expand list is feasible according to

bound P1 (which checks mainly reachability of a single

action). Including this check into the other experiments of

this work where we evaluated the performance with the net-

work did not make any statistically meaningful difference,

hence we have not reported those results. However, in this

case, where the network is a less perfect heuristic, having

this check in the algorithm can prevent the search from

Table 2. Comparison between network and multi-bound LGP tree search for generalization experiment to multiple objects in the

scene. Percentage of solved scenes within the timeout depending on both the number of objects in the scene and the action sequence

length to solve the task. LGP is not able to find a solution within the timeout for challenging scenes with many objects and long action

sequence length. With the network, all scenes can be solved within the timeout.

Number of objects in the scene Length of the action sequence

2 3 4 5 6

Multi-bound LGP tree search without network 1 100% 100% 100% 100% �
2 100% 100% 100% 88% 27%
3 100% 100% 100% 100% 6%
4 100% 100% 100% 100% 0%
5 100% 100% 100% 75% 0%

Deep visual reasoning pNN 1

100%
2
3
4
5

Figure 13. Generalization to multiple objects for pick-and-place

experiment with the proposed deep visual reasoning neural

network. During training, only and exactly two objects have been

present in the training scenes. Although the number of candidate

action sequences increases exponentially with more objects in the

scene (see Table 1), the runtime to find a feasible solution with

the neural network increases only slightly when more objects are

added.

Driess et al. 1453

going into infeasible parts of the LGP tree, leading to better

performance.

5.2.11. Generalization to cylinders. Although the network

has been trained on box-shaped objects only, we investigate

whether the same network can generalize to scenes which

contain other shapes such as cylinders. As the objects are

encoded in the image space, there is a chance that, as com-

pared with a feature space which depends on a less-general

parameterization of the shape, this is possible. We gener-

ated 200 test scenes that either contain two cylinders, three

cylinders or a mixture of a box and a cylinder, all of differ-

ent sizes/positions/orientations and targets. If the goal is to

place a cylinder on the target, we made sure in the data

generation that the cylinder has an upper limit on its radius

in order to be graspable. These cylinders, however, have a

relatively similar appearance in the rasterized image as

boxes. Therefore, the scenes also contain cylinders which

have larger radii such that they have a clearly different

appearance than what is contained in the dataset. An

example of such a scene can be seen in Figure 16. These

larger cylinders cannot, of course, be grasped and, hence,

are not placed on the target or are the target itself. The net-

work correctly does not attempt to grasp these cylinders

with too large radii.

Figure 17a shows the total solution time with the neural

network. As one can see, there is no drop in performance

compared with box-shaped objects, which indicates that the

network is able to generalize to other shapes. For sequence

length 6, the runtimes are a bit higher, but are still very low,

especially compared with LGP tree search without the net-

work. In Figure 17b, the number of NLPs that have to be

solved show that, except for sequence length 6, the median

is 1 for all other sequence lengths, which means that in the

majority of the cases, only a single optimization problem

has to be solved to find a feasible solution.

Please note that our constraints for the nonlinear tra-

jectory optimization problem are general enough to deal

with boxes and cylinders. However, one also has to state

that for even more general shapes the trajectory optimiza-

tion for grasping becomes a problem in its own (grasping

Figure 14. Comparison with multi-bound LGP tree search for the generalization to multiple objects experiment (pick-and-place

scenario). Plots show the total runtime to find a feasible solution, split over scenes that could be solved with (a) an action sequence

length of 2 or 3 and (b) an action sequence length 4, 5, or 6. The results show that the increased number of candidate action sequences

for more objects in the scene (Table 1) leads to significantly longer solution times for LGP. In contrast, the runtime to find a feasible

solution with the neural network increases only slightly when more objects are added.

Table 3. Runtime results for generalization experiment where three objects have to be manipulated to solve the task

Scene pNN pNN with bound LGP Speedup LGP=pNN Speedup LGP=
pNNwith bound

Min seq. length 5 or 6 1 8 s 8 s 1,913 s 239 238
2 — not found —
3 6 s 6 s 2,154 s 347 351
4 179 s 19 s 17,750 s 99 932
5 381 s 211 s 3,813 s 10 18

Min seq. length 8 6 14,121 s 3,326 s not found ‘‘‘’’ ‘‘‘’’
7 10,041 s 2,384 s not found ‘‘‘’’ ‘‘‘’’
8 114 s 93 s 1,182 s 10 13

1454 The International Journal of Robotics Research 40(12-14)

can be considered as an own subfield of robotics

research).

Of the 200 test scenes, in 41% of the cases the network

finds a solution with sequence length 2, in 9% of length 3,

in 30% of length 4, in 3% of length 5, and in 17% of length

6, which also shows that we have not artificially created

simple problems. As for these cylinders no handovers are

possible, there are very few of sequence length 3 and 5.

5.2.12. Real robot experiments. Figure 4 shows our com-

plete framework in the real world. In this scene the blue

object occupies the goal location and the target object (yel-

low) is out of reach for the robot arm that is be able to place

it on the goal. As the yellow object is large enough, the net-

work proposed a handover solution (Figure 4e). The pres-

ence of an additional object (green) does not confuse the

predictions. Indeed, in all real-world experiments, the net-

work always predicted a feasible action sequence directly.

The planned trajectories are executed open-loop, which

implies that, although all planned trajectories are feasible,

some executions fail. There were two main failure modes.

On the one hand, if there was a handover, sometimes the

grasp was not stable enough and the box rotated a bit, such

that the other robot arm then could not successfully grasp

the box. On the other hand, because there is no collision

margin in the trajectory optimization method, sometimes a

planned trajectory moves the gripper with a distance of only

a few millimeters to a box. Small errors in the perception

pipeline then could lead to unexpected movements of the

boxes.

Note that the images as input to the neural network are

rendered from object models obtained by a perception pipe-

line. This allows the trained network in simulation to be

transferred to the real robot directly. The perception pipe-

line is a simple background subtraction method in the depth

space to get object masks and then fitting box models to the

segmented pointclouds. One could argue that the fact that

we use rendered images from the object models for the real

robot experiments is a limitation of the proposed approach

compared with utilizing real images for the network predic-

tions. However, because the trajectory optimization needs

object models, there would be no advantage in the current

approach to using real images for the network prediction.

5.3. Pushing experiment

In this experiment, we consider a scenario where objects

on a table should be moved to a desired goal configuration

Figure 15. Generalization experiment where three objects have to be manipulated to solve the task, because not only is grasping the

target object (yellow) obstructed by another object, but the goal location is also occupied with yet another object: (a) minimum

required sequence length 5 or 6; (b) minimum required sequence length 8. The training distribution contained scenes with two objects

only. Hence, only a maximum of two objects within an action sequence length of up to 6 have to be manipulated. Therefore, for the

scene in (b), we ask for generalization in two ways beyond the training distribution, namely three objects to be manipulated and longer

sequence length.

Figure 16. Test scene with cylinders. During training, the

network has only seen box-shaped objects. The cylinder in the

middle has a large enough radius to have a clearly different

appearance in the image space than boxes. Pick-and-place

experiment.

Driess et al. 1455

(position and orientation on the table) with one robot arm.

Compared with the last experiment (Section 5.2), the

objects are too large to be grasped. Furthermore, they can

be completely out of reach of the robot. Therefore, the

robot has to use a hook-shaped tool to push and/or pull the

object to the desired location. See Figure 18a or 19 for a

typical example scene. The goal pose in these scenes is

visualized in transparent green.

5.3.1. Action operators and optimization objectives. The

equations of motion of the object that should be pushed are

taken from Toussaint et al. (2020), where it is modeled

with quasi-static dynamics based on the Newton–Euler

equations in the plane with friction. These equations of

motion enter the optimization problem in terms of equality

constraints.

We define three action operators, grasp,

pushSide(H O n), and toGoal(O Og).

A grasp action enables the robot to grasp the hook by

constraining the center point between the two grippers of

the end-effector to be inside of the hook with an inequality

constraint and a cost term that aligns the grippers parallel

to the long side of the stick. The exact grasping location

along the stick is not defined by the grasp action and,

therefore, chosen by the optimizer. This action allows one

degree of freedom more than the grasp action from Section

5.2.1 the optimizer has to fill in, because the hook has a

cylindrical shape. As there is only one hook in this experi-

ment, the grasp action does not explicitly have a para-

meter. Accounting for different hooks, however, would be

a straightforward extension.

The second action operator pushSide(H O n) models

force exchange between the hook and a side of an object.

The hook has two geometric features H 2 fH1,H2g that can

be used for pushing, visualized as the two green balls in

Figure 17. The parameter O 2 P(O(S)) denotes the object

that should be pushed. Following Toussaint et al. (2020),

the pushSide action introduces multiple constraints and

regularization objectives to the optimization problem. Most

importantly, it introduces a six-dimensional decision vari-

able (fPoA, pPoA) 2 R
6 to the path optimization problem

that represents the total wrench exchange between the H
part of the hook and the object O in terms of a linear force

fPoA 2 R
3 (constrained to be positive) and the so-called

point of attack (PoA) pPoA 2 R
3. Together, they define the

wrench (fPoA, fPoA× pPoA) that enters the Newton–Euler

equation for O. Please refer to Toussaint et al. (2020) for

details about the PoA mechanism.

As an important extension to Toussaint et al. (2020),

where the PoA is constrained to be anywhere on the sur-

face of H and O at the same time for contact interactions to

happen, we introduce the additional discrete parameter n

for the pushSide action. Let N (O)= fn1, . . . , nnn
g,

ni � R
3 be a decomposition of the surface N (O) of O into

nn\‘ many connected parts. In our case, we consider the

vertical faces of prism objects (boxes and triangular

prisms). Then the parameter n of the pushSide action

constraints the PoA to be on one of those faces, i.e.,

pPoA 2 n as an equality constraint. This means that the

choice of n indicates from which side the object should be

pushed.

Although the PoA mechanism of Toussaint et al. (2020)

can, in principle, figure out from which side to push an

object, we found that without introducing n as a discrete

decision, the resulting NLP is prone to local optima and the

robustness of the optimizer finding a solution significantly

drops due to the non-convexity of the problem, especially

with respect to collision avoidance. The discrete variable n

Figure 17. Generalization to cylinders for pick and place experiment with neural network integrated into the tree search algorithm:

(a) total time to find a feasible solution; (b) number of NLPs that have to be solved to find a solution. During training, the network

has never seen cylinder-shaped objects. Test scenarios include one, two cylinders, or a mixture of cylinder and a box. As can be seen

in (b), except for sequence length 6, the median of the number of NLPs that have to be solved is one, meaning the first predicted

action sequence is feasible in the majority of the cylinder test cases, i.e., no search necessary.

1456 The International Journal of Robotics Research 40(12-14)

singulates local optima and thereby greatly increases the

robustness of the solver.

The PoA allows to model both sliding and sticking con-

tacts. However, here we consider the sliding case only,

which means that an equality constraint is added that

ensures that the tangential component of the force on the

surface of O chosen by n is zero. A regularization term on

the relative sliding velocity of the PoA penalizes the hook

for sliding over the surface of the object, which increases

the physical plausibility of the sliding contact assumption.

The two different parts fH1,H2g of the hook that can be

used for pushing are represented in �a, leading to two differ-

ent discrete action symbols for the pushSide action. The

object O that should be pushed as well as the pushing side

n is encoded in the action–object image. For O it is a mask

of the object, for n a mask of the surface, which for the top

down view as in this experiment leads to pixels that repre-

sent an edge of the object. Figure 18 visualizes these

action–object images.

Note that one could also represent those geometric fea-

tures of the stick in the image space (then the pushSide
action–object image would be a four-channel image), but

this was not necessary for this experiment, because the

hook was always the same.

Finally, the toGoal(O Og) action simply models a

pose equality constraint between the object O and its

desired target pose Og. Both O and Og are encoded as

masks in the action–object image.

We consider a maximum of two consecutive pushes.

Therefore, in summary, if nn is the number of faces of an

object, then there are 2nn action sequences of length 3 and

(2nn)
2 action sequences of length 4. The first action is

always a grasp of the hook.

5.3.2. Training/test data generation. We sampled 10,000

scenes containing boxes of different sizes, positions, and

orientations, as well as 10,000 scenes with triangular

prisms, again of different sizes, positions and orientations.

Both are combined into one dataset, leading to 20,000

scenes in total, i.e., we train one network on both boxes

and triangular prisms. For the boxes, the scene parameter

space has dimension eight, and for the triangular prisms,

the scene parameter space has dimension seven.

As, for this experiment, the LGP tree is relatively small

(but still too large for satisfactory performance at test time),

we can actually compute all solutions within reasonable time.

Specifically, there are 72 action sequences for each box scene

and 42 for each triangular prism scene. Eight of the 72 for

the box are action sequences of length 3, and 64 are of length

4. For the triangular prisms, 6 are of length 3, and 36 are of

length 4. Therefore, the dataset contains the feasibility of all

possible action sequences of each sampled scene.

Representing the pushing actions in the image space

allows us to have the same input encoding for both the tri-

angular prisms and the boxes, although they have a differ-

ent number of faces.

For the test data, we generated 1,000 scenes with the

same method, but a different random seed, 500 with boxes

and 500 with triangular prisms. For the boxes, 462 scenes

contained at least one feasible solution, for the triangular

prisms only 369, which then serve as the actual test scenes.

In the test dataset, 14.4% of the action sequences for the

boxes are feasible, 9% for the triangular prisms. Among

those, 5.7% (9%) are of length 3 and 94.3% (91%) are of

length 4 for the boxes (triangular prisms).

Note that for every feasible action sequence of length 3,

there exists also a feasible one of length 4, namely by push-

ing two times from the same side. This pushing from the

same side twice, however, can also be useful to find a cost-

effective (or even feasible) solution, because, owing to the

regularization cost term, sliding movements are penalized

when the contact between the tool and the object is estab-

lished. Two consecutive pushes from the same side allow

the robot to reposition the contact location without creating

large regularization costs.

Figure 18. Visualization of the action–object image encodings I(O, S) for an example test scene of the pushing experiment. (a) Initial

scene. The two green balls of the hook are the two parts H1 and H2 of the hook that can be used for pushing. (b) Action–object image

for the pushSide action utilizing H1 of the hook for pushing. (c) Action–object image for the pushSide action utilizing H2 (the tip

of the hook) for pushing. (d) Goal–object and action–object image for toGoal action representing that the objects should be moved

to the goal mask. In all images, the first channel is a depth channel of the scene. The images always refer to the initial scene

configuration (a). The push side masks in (b) and (c) represent the side of the object as an edge mask where the robot should push.

Driess et al. 1457

5.3.3. Performance: results on test scenarios. In Figure 20,

we visualize a typical sequence of motions for the pushing

scenario.

Figure 21 shows the number of NLPs that have to be

solved to find a feasible solution with the neural network

for the test scenarios. As one can see, for sequence length

3, for both boxes and triangular prisms the network always

finds a feasible solution as its first prediction. For sequence

length 4, the median of NLPs that have to be solved for

boxes is one, for triangular prisms the performance is

slightly worse with a median of 2, but still a high

performance.

The network finds in 30% (23%) of the box (triangular

prism) test cases a solution with sequence length 3 and in

70% (77%) of cases a solution with sequence length 4.

For this evaluation, the network has been trained on both

boxes and triangular prisms. When we train separate net-

works for the two different shapes and then evaluate on

only those different shapes separately, we do not see a sig-

nificant difference in the performance.

5.3.4. Comparison with LGP tree search. Compared with

kinematic problems as considered in Section 5.2, it is less

clear how to define lower bounds that are useful for the

pushing scenario that contains dynamic models. Therefore,

we compare the performance with LGP tree search without

lower bounds, i.e., where directly the full path optimization

problem for a chosen action sequence is computed. When

we report the number of NLPs that have to be solved to find

a feasible solution with LGP in this section, we refer to the

expected value when randomly selecting action sequences,

which we can determine because, as mentioned in Section

5.3.2, the search tree is small enough for us being able to

check the feasibility of all possible action sequences of the

test scenes for comparison.

As can be seen in Figure 22, utilizing the network leads

for both the triangular prisms and the boxes to a great

speedup compared with randomly selecting action

sequences. Note that in Figure 22b, LGP has an expected

value of exactly 6 for sequence length 3, because for all tri-

angular prisms in the test scenes only a single one of the 6

possible action sequences each was feasible.

5.3.5. Generalization to other shapes. The network is

trained on box-shaped objects and triangular prisms. Our

proposed image based representation for expressing the

Figure 19. Example test scene of the pushing experiment

containing a triangular prism as the object. The green prism

visualizes the target location.

Figure 20. Typical sequence of motions for the pushing experiment: (a) initial scene; (b) grasp action; (c) pushSide action with

H1 begin; (d) pushing action ongoing; (e) pushSide action with H2 begin; (f) toSide action to realize the goal. The gray box

should be moved to the green goal location. The network directly predicts a feasible action sequence consisting of two pushes from

different sides of the object with different parts (H1 and H2, indicated by the green balls) of the hook. Action sequence length is 4.

1458 The International Journal of Robotics Research 40(12-14)

sides from which the object should be pushed and the

desired goal pose allow in principle also other shapes as

input to the neural network. Even if there are more push-

faces, the algorithm can directly handle this. We therefore

tested whether the network can generalize with good per-

formance to other shapes than boxes and triangular prisms,

in this case penta prisms.

In order to do so, we generated 200 test scenes that con-

tain penta prisms of different sizes, positions, and orienta-

tions as well as different goal poses. See Figure 23 for an

example test scene. For penta prisms, there are 110 differ-

ent action sequences up to length 4 (10 of length 3, 100 of

length 4). By solving the NLPs corresponding to all 110

different action sequences, we obtained 188 feasible scenes,

which then are the test scenes for this experiment. A total

of 13.7% of the action sequences are feasible, among which

3.5% are of length 3 and 96.5% of length 4.

Figure 24a reports the number of solved NLPs to find a

feasible solution. This figure also contains a comparison

with the expected value with LGP. As one can see, the net-

work literally just generalizes to penta prisms, although dur-

ing training the network only has seen boxes and triangular

prisms. The performance is identical to the performance of

solving scenes containing boxes (see Figure 21), which is

remarkable. For sequence length 3, in all cases the first pre-

dicted sequence was feasible, for sequence length 4 the

median was 1, the upper whisker 3. Further, in all of the

188 test scenes a solution was found. However, it also has

to be noted that the optimizer has full access to the shape of

the penta prism. Nevertheless, the network is capable of

predicting the push sequence and from which side with

high performance for penta prisms, which clearly are not

contained in the dataset.

In addition, we tested whether a network that was trained

only on boxes, i.e., no triangular prisms, can also generalize

to penta prisms. As can be seen in Figure 24b, although the

performance is slightly worse for sequence length 4 (med-

ian 2 compared with 1 and upper whisker 6 compared with

3), it still generalizes.

5.3.6. Completeness and feasibility threshold. In Table 4

we report the number of test scenes where the network

could not find a solution for different feasibility threshold

strategies. According to Proposition 1, when using the fea-

sibility threshold together with the discounting adjustment

(see Section 4.6.1), prediction errors of the network cannot

prevent a feasible solution from being found if it exists.

Indeed, as can be seen in the first row of Table 4, in all test

scenarios, the adjustment mechanism of the threshold

enables the network to not miss a single solution. This

Figure 21. Performance on test scenes for the pushing

experiment with our proposed neural network. The network was

trained on both boxes and triangular prisms.

Figure 22. Comparison of LGP with our proposed neural network on test scenes for the pushing experiment: (a) comparison with

LGP on box scenes; (b) comparison with LGP on triangular prisms scenes. The network was trained on both boxes and triangular

prisms. In (b) the second median line from the left corresponds to LGP.

Driess et al. 1459

holds true for testing on both boxes and triangular prisms

as in the training set, but also for penta prisms which shape

the network has never seen during training.

In comparison, if only the feasibility threshold

fthresh = 0:5 is used without the adjustment mechanism, for

some (up to 21% for the triangular prism or 15% for the

penta prism) test scenes, the network prevented a solution

from being found by classifying feasible solutions as infea-

sible. Even when reducing the threshold to fthresh = 0:1,

still some feasible test scenes are classified infeasible and,

hence, not solved. Only if the threshold is removed com-

pletely can all scenes again be solved. This, however,

comes with a performance penalty.

5.3.7. Cost prediction. In Section 4.8, we proposed how

the framework cannot only be used to find feasible solu-

tions, but also to take the trajectory costs into account. This

section analyzes both the performance of the cost prediction

network to find a feasible solution and determines whether

lower cost solutions can be found.

First, the performance in terms of the number of NLPs

that have to be solved to find a feasible solution is exactly

the same as with the feasibility network (the performance

boxplot is identical to Figure 21 and therefore not shown

again) and also for every feasible scene a solution was

found.

In addition, utilizing the cost prediction network, in

78.6% of the test scenarios with boxes and 88.1% with tri-

angular prisms, the first found solution had a lower cost

than with the feasibility prediction network.

For the pick-and-place experiment of Section 5.2, it is

intractable to compute all possible action sequences to find

the cost optimal one. As, for this scenario, we can actually

compute the costs for all sequences, we can investigate how

close the first found solution utilizing the cost prediction

network is to the real lowest cost over all possible action

sequences. Figure 25(a) and (b) show this for the box and

triangular prism test scenarios, respectively. These figures

report the cost achieved with the network divided by the

optimal cost. This means that a value of 1 corresponds to

Figure 23. Generalization to other shapes. Example test scene

of pushing experiment containing a penta prism. During training

the network has only seen boxes and triangular prisms.

Table 4. Number of test scenes (pushing experiment) for which

no solution was found with the network for different feasibility

threshold strategies. The first row with fthresh = 0:5 and g = 0:9 is

our proposed framework that has completeness guarantees and,

hence, always finds a solution if it exists.

Boxes Triangular Penta
prisms prisms

fthresh = 0:5
g = 0:9

0 0 0

fthresh = 0:5 20 (4%) 78 (21%) 28 (15%)
fthresh = 0:1 8 (2%) 19 (5%) 5 (3%)
no fthresh 0 0 0

Figure 24. Generalization to penta prism shapes for the pushing experiment. (a) Performance with a network trained on boxes and

triangular prisms as well as comparison with LGP without the network. (b) Performance of a network trained on boxes and triangular

prisms or boxes only. During training of the network, only boxes and triangular prisms were present in the scene.

1460 The International Journal of Robotics Research 40(12-14)

the case where the cost optimal solution was found as the

first prediction, a value of 2 corresponds to the case where

the found cost was twice as high as the optimum, etc.

One can clearly see that by utilizing the cost prediction

network one can achieve considerably lower costs with the

first prediction compared with performing feasibility pre-

diction only. The median for the boxes is very close to 1

and for the triangular prisms the median is 1, i.e., in half of

the cases the first found solution was the cost optimal

solution.

6. Discussion

Sequential manipulation problems as considered with

TAMP approaches are difficult for several reasons. First,

the sequential nature not only implies a huge combinatorial

complexity of possible high-level action sequences, but

also challenging non-convex motion planning problems,

where multiple constraints at different phases of the motion

have to be coordinated globally (Dantam et al., 2018;

Driess et al., 2019a; Garrett et al., 2020; Orthey et al.,

2020; Xu et al., 2020). For example, the hook has to be

grasped in a certain way in order for it to be possible to

push the object to an intermediate position from which the

final push to the goal can then be executed.

LGP is one approach to address this by introducing dis-

crete variables that are subject to logic rules to make the

trajectory optimization for sequential manipulation prob-

lems more tractable, while retaining the property of being

able to coordinate the motions in the different phases of the

trajectory with global consistency. This, however, implies a

combinatorial complexity, significantly increasing the com-

putation time to find a solution, because many, mostly

infeasible optimization problems have to be solved.

A key property of TAMP algorithms is that they show

remarkable generalization capabilities with respect to dif-

ferent scenes with many and different numbers of objects,

changing geometries, etc. This is another reason why

sequential manipulation problems are difficult, because the

variety of tasks in different scenes demands strongly gener-

alizing algorithms. From a learning point of view, it is chal-

lenging to create datasets that cover such a variety of scene

parameters and goals.

We make essential contributions in several of those

regards. First, we address the combinatorial complexity that

is introduced through the discrete variables by learning a

goal conditioned network that guides the search over the

discrete variables in a way that most of the time the search

is eliminated, leading to large speedups in solution times.

Further, we demonstrated our method not only on a single

problem instance, but on a variety of scenes, including dif-

ferent object parameters, goals, but especially increasing

numbers of objects, although only a fixed number of

objects was present in the training set. Moreover, our pro-

posed image representation enables generalization to differ-

ent shapes of objects than those present in the training

data.

The generalization to more objects than during training

is a major advantage of the image-based encoding of the

scene we proposed compared with a fixed feature represen-

tation. As shown in Section 5.2.9, the network is able to

maintain high performance if more objects are added to the

scene. However, one also has to state that this kind of gen-

eralization to multiple objects has to be understood in the

sense that the network correctly chooses up to two objects

which have to be manipulated (multiple times) to solve the

task. The network realizes a kind of attention mechanism,

operating on only the relevant parts of the environment.

This could also be observed in the generalization experi-

ment to cylinders (Section 5.2.11), where the network does

not attempt to grasp cylinders which are too large, although

it has never seen cylinder-shaped objects during training.

Being able to identify which objects are relevant to solve

the task is crucially important and the reason for why the

network can find solutions quickly even in scenarios where

there are nearly half a million candidate action sequences,

Figure 25. Achieved trajectory costs in comparison with the overall optimum for the first found feasible solution with the cost

prediction network pcost and with the feasibility prediction network pNN: (a) evaluation on scenarios with boxes; (b) evaluation on

scenarios with triangular prisms. A value of 1 corresponds to the optimal cost, a value of 2 to twice the optimal cost, etc.

Driess et al. 1461

cf. Table 1 and Figure 13. We believe that such an attention

mechanism is the key to tackling even more realistic envir-

onments with far greater combinatorial complexities such

as household scenarios.

Although we do not expect the network to generalize

with high accuracy to scenarios where more than two

objects have to be manipulated in order to solve the task

without a broader training distribution, we have investi-

gated in Section 5.2.10 and Table 3 that for scenes where

three objects have to be manipulated with action sequence

length up to eight (training distribution has a maximum

sequence length of six and contains only two objects), the

network still leads to a speedup in finding a solution up to

several orders of magnitude compared with LGP without

the network. However, in this case, the network acts as a

heuristic that does not eliminate search, since more optimi-

zation problems had to be solved to find a feasible solution

compared with the scenarios where only two objects in the

scene have to be manipulated.

Our approach assumes that we are able to extract seg-

mentation masks of each object from the raw image of the

initial scene. Many methods such as Mask R-CNN (He

et al., 2017) have been developed for object segmentation.

Although definitively challenging, we believe that the abil-

ity to segment objects in an image is a necessary condition

for many robot applications that rely on perception in

uncontrolled environments and, hence, a reasonable

assumption to make. In particular, without being able to

detect objects, defining the TAMP problem in the first

place is unclear. There are also recent approaches that esti-

mate the state of the symbolic domain from image segmen-

tations (Kase et al., 2020; Mukherjee et al., 2020; Zhu

et al., 2020).

As already mentioned in Section 5.2.12, although the

generation of the discrete action sequences only relies on

images and these object segmentations, the trajectory opti-

mization still requires object models in terms of their

shapes and poses. Hence, a perception pipeline is required

to extract these properties from the raw image observations.

Future work could investigate how to make the motion gen-

eration given a discrete action sequence less reliant on

exact object models (Driess et al., 2021a,b; Manuelli et al.,

2019; Qin et al., 2019; Simeonov et al., 2020; Suh and

Tedrake, 2020; Wang et al., 2020).

Despite this, we have shown that the image representa-

tion has advantages (generalization to multiple objects/

shapes, encoding geometry information) independently

from whether object models are known or not. This means

that one way to interpret the images in this work is not sol-

ving manipulation from raw perception, but a flexible state/

action representation for long-horizon reasoning. Still, we

believe that this representation is also one step to connect

TAMP more closely to real perception.

One of the main limitations of this work, in our opinion,

is that the initial scene image has to contain all information

that is necessary to reason about the action sequence.

Therefore, we have focused on tabletop manipulation

scenarios, because, in this case, the assumption that the

image contains sufficient information about the scene/task

is reasonable for the considered tasks. Total occlusions, for

example, if an object is inside a cabinet, cannot be handled

with the current approach. Partial occlusions, as long as the

image still contains sufficient information, can in principle

work. In a scenario where objects are stacked on top of

each other in the initial scene, the top-down camera view

as considered here is insufficient, but could be replaced

with an angled view. As long as object masks and the

image are provided in such a way that still the relevant

object geometries can be inferred, we expect the method to

work just as well. In mobile manipulation setups, the pro-

posed methodology would not be applicable for solving the

whole problem, because it is unrealistic to assume that a

single image contains all necessary information. However,

we believe that the ideas of this work could also be useful

for solving parts of the manipulation problem (subgoals)

quickly and repeatedly in an online setup. Most existing

TAMP approaches assume full knowledge about the initial

state, even in mobile manipulation settings. Only recent

work starts to address these issues by belief-space planning

in the context of TAMP (Garrett et al., 2019; Phiquepal

and Toussaint, 2019).

In general, a major strength of the LGP formulation is

that the actions imply constraints that only partially deter-

mine the behavior of the trajectory. The overall trajectory is

then optimized with global consistency, filling in the

remaining degrees of freedoms, or action parameters as

they are called in other TAMP approaches. This property

of LGP allows us, for example, to efficiently generate

handover motions or removing of obstacles without expli-

citly needing to enumerate handover poses or the place-

ment positions of the occupying obstacle. However, scaling

to significantly longer action sequence lengths, it becomes

clear that it is neither necessary nor feasible to optimize tra-

jectories with complete global consistency. Introducing fur-

ther hierarchies (Kaelbling and Lozano-Pérez, 2011) or

breaking the manipulation down into (less-dependent) sub-

goals (Driess et al., 2019a; Hartmann et al., 2020, 2021)

becomes necessary.

Instead of a black-box reward function, we specify the

manipulation planning goal in terms of object masks simi-

lar to the action–object images. This goal–object image

contains both the mask of the target object and the goal, as

well as a channel of the whole scene. Therefore, the goal

specification can encode the target object, the goal and

other objects in the scene in such a way to take their geo-

metric relations into account. Figure 26 shows a scenario

where the goal is only partially occluded by the blue object.

In this case, the network is able to realize that the yellow

object can be placed on the green goal region without

removing the blue object first and proposes this as the first

solution. For a stacking scenario, one could think of having

multiple object masks as part of the goal specification to

encode which objects should be stacked. However, such

1462 The International Journal of Robotics Research 40(12-14)

goal specifications assume that masks of the unobstructed

goal region for the pick-and-place experiment and the mask

of the desired target pose for the pushing experiment can

be generated. Investigating other goal specifications is an

important topic for future research.

To show the completeness of our framework (proposi-

tion 1), we assumed (assumption 1) that the nonlinear tra-

jectory optimizer numerically converges to a feasible

solution if the problem is indeed theoretically feasible.

Although such assumptions usually only hold for convex

problems and our trajectory optimization problems are,

even for a fixed action sequence, non-convex, we empiri-

cally found that the optimizer converges reliably. The intro-

duction of the additional discrete decisions for the pushing

scenario was important for this robustness.

We considered boxes, cylinders, triangular, and penta

prisms, all of different sizes, in this work. Although we

argue that an advantage of the input images is their princi-

pal capability of representing and generalizing to different

shapes, we assumed that the underlying trajectory optimiza-

tion method can handle those shapes. In order to achieve

this, the paradigm of this work is to introduce a set of dis-

crete decisions for each subtask (grasping, pushing, and

placing). These decisions can (not strictly) be understood as

a means to enumerate local optima such that, given the dis-

crete decisions, the optimizer is then able to find the

remaining degrees of freedom for global consistency

robustly. In the case of grasping, those decisions enumerate

graspings from different sides of the object. For pushing,

they specify the side from which the object should be

pushed. In principle, one could think of introducing more

such discrete decisions to deal with a greater variety of

shapes. However, generalizing this idea to arbitrary shapes

is not directly straightforward for multiple reasons. On the

one hand, it becomes less clear how to define constraints

realizing the subtasks for arbitrary shapes in a way that, in

the paradigm of this work, benefits from parameterizing

them with discrete decisions to make trajectory optimiza-

tion with those constraints tractable. On the other hand, if

too many discrete decisions are introduced, then the branch-

ing factor of the LGP tree increases significantly. This

might not only lead to a harder learning problem, but it also

becomes more challenging to generate data containing

enough feasible action sequences in a reasonable amount of

computation time. As illustrated in Figure 6, we considered

four different graspings from above the object. In our previ-

ous work (Driess et al., 2020b), we have shown for a single

action that the feasibility of not only top, but additionally

also side grasps can be predicted from a similar input repre-

sentation as in the present work. We anticipate that our net-

work would, in principle, be able to take side grasps into

account as well. In order to address the data generation

problem in this case due to an increased branching factor,

bootstrapping the learned network for data generation

would be one way. We believe that integrating grasping of

complex objects within long-horizon tasks where the way

an early grasp is executed has to be coupled with later

phases of the motion is an important future research topic.

7. Conclusion

In this work, we have proposed a neural network that

learns to predict promising discrete action sequences for

sequential manipulation problems from an initial scene

image and the task goal as input. In most cases, the first

sequence generated by the network was feasible. Hence,

despite the fact that the network can act as a search heuris-

tic, there was very little search over the discrete decisions

required and, consequently, often only one trajectory opti-

mization problem had to be solved to find a solution to the

TAMP problem.

Although being trained on only two objects present at a

time, the learned representation of the network was able to

be generalized to scenes with multiple objects and other

shapes while still showing a high performance.

We have shown that the approach can be applied not only

to kinematic pick-and-place problems as is typical in TAMP,

but also to a scenario where an object has to be pushed with

a tool to a desired target location. Here one can see another

advantage of the image representation, because the network

generalized to other shapes than during training.

A main assumption and, therefore, main limitation of the

proposed method is that the initial scene image has to con-

tain sufficient information to solve the task, which means

that there should be no total occlusions or other ambiguities.

Acknowledgements

We thank the anonymous reviewers for their helpful comments.

ORCID iD

Danny Driess https://orcid.org/0000-0002-8258-1659

Figure 26. Goal region (green) is only partially occluded by the

blue object, such that the yellow object can be placed on the goal

without removing the blue object first. The network find this as

its first proposed solution.

Driess et al. 1463

https://orcid.org/0000-0002-8258-1659

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship and/or publication of this article:

Danny Driess thanks the International Max-Planck Research

School for Intelligent Systems (IMPRS-IS) for support. Marc

Toussaint is grateful for the Max-Planck Fellowship at the Max-

Planck Institute for Intelligent Systems in Stuttgart. This research

has been supported by the German Research Foundation (DFG)

under Germany’s Excellence Strategy (grant number EXC 2002/

1–390523135 ‘‘Science of Intelligence’’).

References

Amos B, Jimenez I, Sacks J, Boots B and Kolter JZ (2018) Differ-

entiable MPC for end-to-end planning and control. In: Advances

in Neural Information Processing Systems, pp. 8289–8300.

Bejjani W, Dogar M and Leonetti M (2019) Learning physics-

based manipulation in clutter: Combining image-based

generalization and look-ahead planning. In: International

Conference on Intelligent Robots and Systems (IROS). IEEE.

Boots B, Siddiqi SM and Gordon GJ (2011) Closing the learning–

planning loop with predictive state representations. The Inter-

national Journal of Robotics Research 30(7): 954–966.

Carpentier J, Budhiraja R and Mansard N (2017) Learning feasi-

bility constraints for multicontact locomotion of legged robots.

In: Robotics: Science and Systems.

Chitnis R, Hadfield-Menell D, Gupta A, et al. (2016) Guided

search for task and motion plans using learned heuristics. In:

International Conference on Robotics and Automation (ICRA).

IEEE, pp. 447–454.

Chitnis R, Silver T, Kim B, Kaelbling LP and Lozano-Perez T (2020)

CAMPS: Learning context-specific abstractions for efficient plan-

ning in factored MDPs. arXiv preprint arXiv:2007.13202.

Dantam NT, Kingston ZK, Chaudhuri S and Kavraki LE (2018)

An incremental constraint-based framework for task and

motion planning. The International Journal on Robotics

Research 37(10): 1134–1151.

de Silva L, Pandey AK, Gharbi M and Alami R (2013) Towards

combining HTN planning and geometric task planning. arXiv

preprint arXiv:1307.1482.

Doshi N, Hogan FR and Rodriguez A (2020) Hybrid differential

dynamic programming for planar manipulation primitive. In:

International Conference on Robotics and Automation (ICRA).

IEEE.

Dosovitskiy A and Koltun V (2017) Learning to act by predicting

the future. In: International Conference on Learning Represen-

tations ICLR.

Driess D, Ha JS and Toussaint M (2020a) Deep visual reasoning:

Learning to predict action sequences for task and motion plan-

ning from an initial scene image. In: Proceedings of Robotics:

Science and Systems (R:SS).

Driess D, Ha JS, Tedrake R and Toussaint M (2021a) Learning

geometric reasoning and control for long-horizon tasks from

visual input. In: Proceedings of the IEEE International Con-

ference on Robotics and Automation (ICRA).

Driess D, Ha JS, Toussaint M and Tedrake R (2021b) Learning

models as functionals of signed-distance fields for manipula-

tion planning. In: Proceedings of the Annual Conference on

Robot Learning (CoRL).

Driess D, Oguz O and Toussaint M (2019a) Hierarchical task and

motion planning using logic-geometric programming (HLGP).

In: RSS Workshop on Robust Task and Motion Planning.

Driess D, Oguz O, Ha JS and Toussaint M (2020b) Deep visual

heuristics: Learning feasibility of mixed-integer programs for

manipulation planning. In: Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA).

Driess D, Schmitt S and Toussaint M (2019b) Active inverse

model learning with error and reachable set estimates. In: Pro-

ceedings of the IEEE International Conference on Intelligent

Robots and Systems (IROS).

Ebert F, Finn C, Lee AX and Levine S (2017) Self-supervised

visual planning with temporal skip connections. In: Confer-

ence on Robot Learning.

Finn C and Levine S (2017) Deep visual foresight for planning

robot motion. In: International Conference on Robotics and

Automation (ICRA). IEEE, pp. 2786–2793.

Finn C, Tan XY, Duan Y, Darrell T, Levine S and Abbeel P (2016)

Deep spatial autoencoders for visuomotor learning. In: Interna-

tional Conference on Robotics and Automation (ICRA). IEEE.

Garrett C, Kaelbling L and Lozano-Perez T (2016) Learning to

rank for synthesizing planning heuristics. In: Proceedings of

the International Joint Conference on Artificial Intelligence

(IJCAI).

Garrett CR, Chitnis R, Holladay R, et al. (2020) Integrated task

and motion planning. arXiv preprint arXiv:2010.01083.

Garrett CR, Paxton C, Lozano-Pérez T, Kaelbling LP and Fox D

(2019) Online replanning in belief space for partially observa-

ble task and motion problems. arXiv preprint arXiv:1911

.04577.

Ha JS, Driess D and Toussaint M (2020) Probabilistic framework

for constrained manipulations and task and motion planning

under uncertainty. In: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA).

Ha JS, Park YJ, Chae HJ, Park SS and Choi HL (2018) Adaptive

path-integral autoencoders: Representation learning and plan-

ning for dynamical systems. In: Advances in Neural Informa-

tion Processing Systems, pp. 8927–8938.

Hartmann VN, Oguz OS, Driess D, Toussaint M and Menges A

(2020) Robust task and motion planning for long-horizon

architectural construction planning. arXiv preprint

arXiv:2003.07754.

Hartmann VN, Orthey A, Driess D, Oguz OS and Toussaint M

(2021) Long-horizon multi-robot rearrangement planning for

construction assembly. arXiv preprint arXiv:2106.02489.

He K, Gkioxari G, Dollár P and Girshick R (2017) Mask R-CNN.

In: Proceedings of the IEEE international conference on com-

puter vision, pp. 2961–2969.

Hogan FR, Grau ER and Rodriguez A (2018) Reactive planar

manipulation with convex hybrid MPC. In: International Confer-

ence on Robotics and Automation (ICRA). IEEE, pp. 247–253.

Hogan FR and Rodriguez A (2016) Feedback control of the

pusher–slider system: A story of hybrid and underactuated

contact dynamics. In: Proceedings of the Workshop on Algo-

rithmic Foundation Robotics (WAFR).

Ichter B, Harrison J and Pavone M (2018) Learning sampling dis-

tributions for robot motion planning. In: International Confer-

ence on Robotics and Automation (ICRA). IEEE, pp. 7087–

7094.

1464 The International Journal of Robotics Research 40(12-14)

Ichter B and Pavone M (2019) Robot motion planning in learned

latent spaces. Robotics and Automation Letters 4(3):

2407–2414.

Kaelbling LP and Lozano-Pérez T (2011) Hierarchical planning in

the now. In: Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA).

Kase K, Paxton C, Mazhar H, Ogata T and Fox D (2020) Transfer-

able task execution from pixels through deep planning domain

learning. arXiv preprint arXiv:2003.03726.

Kim B, Kaelbling LP and Lozano-Pérez T (2018) Guiding search

in continuous state-action spaces by learning an action sampler

from off-target search experience. In: Thirty-Second AAAI

Conference on Artificial Intelligence.

Kim B, Wang Z, Kaelbling LP and Lozano-Pérez T (2019) Learn-

ing to guide task and motion planning using score-space repre-

sentation. The International Journal of Robotics Research

38(7): 793–812.

Kloss A, Bauza M, Wu J, Tenenbaum JB, Rodriguez A and Bohg

J (2020) Accurate vision-based manipulation through contact

reasoning. In: 2020 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, pp. 6738–6744.

Lagriffoul F, Dimitrov D, Bidot J, Saffiotti A and Karlsson L

(2014) Efficiently combining task and motion planning using

geometric constraints. The International Journal on Robotics

Research 33(14): 1726–1747.

Lagriffoul F, Dimitrov D, Saffiotti A and Karlsson L (2012) Con-

straint propagation on interval bounds for dealing with geo-

metric backtracking. In: International Conference on

Intelligent Robots and Systems.

Lang T and Toussaint M (2009) Relevance grounding for plan-

ning in relational domains. In: Proceedings of the European

Conference on Machine Learning (ECML 2009) (Lecture

Notes in Computer Science, Vol. 5781). New York: Springer,

pp. 736–751.

Lange S, Riedmiller MA and Voigtländer A (2012) Autonomous

reinforcement learning on raw visual input data in a real world

application. In: Proceedings of IJCNN.

Li R, Jabri A, Darrell T and Agrawal P (2020) Towards practical

multi-object manipulation using relational reinforcement learn-

ing. In: International Conference on Robotics and Automation

(ICRA). IEEE.

Lozano-Pérez T and Kaelbling LP (2014) A constraint-based

method for solving sequential manipulation planning prob-

lems. In: Proceedings of the International Conference on Intel-

ligent Robots and Systems (IROS).

Manuelli L, Gao W, Florence P and Tedrake R (2019) KPAM:

Keypoint affordances for category-level robotic manipulation.

arXiv preprint arXiv:1903.06684.

Mason M (1985) The mechanics of manipulation. In: Interna-

tional Conference on Robotics and Automation (ICRA’85).

IEEE.

Mukherjee S, Paxton C, Mousavian A, Fishman A, Likhachev M

and Fox D (2020) Sim-to-real task planning and execution

from perception via reactivity and recovery. arXiv preprint

arXiv:2011.08694.

Okada M, Rigazio L and Aoshima T (2017) Path integral net-

works: End-to-end differentiable optimal control. arXiv pre-

print arXiv:1706.09597.

Orthey A, Akbar S and Toussaint M (2020) Multilevel motion

planning: A fiber bundle formulation. arXiv preprint

arXiv:2007.09435.

Pascanu R, Li Y, Vinyals O, et al. (2017) Learning model-based

planning from scratch. CoRR abs/1707.06170.

Paxton C, Barnoy Y, Katyal KD, Arora R and Hager GD (2019)

Visual robot task planning. In: International Conference on

Robotics and Automation (ICRA). IEEE, pp. 8832–8838.

Phiquepal C and Toussaint M (2019) Combined task and motion

planning under partial observability: An optimization-based

approach. In: Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA).

Qin Z, Fang K, Zhu Y, Fei-Fei L and Savarese S (2019) Keto:

Learning keypoint representations for tool manipulation. arXiv

preprint arXiv:1910.11977.

Racanière S, Weber T, Reichert D, et al. (2017) Imagination-aug-

mented agents for deep reinforcement learning. In: Advances

in Neural Information Processing Systems.

Rodriguez I, Nottensteiner K, Leidner D, Kasecker M, Stulp F and

Albu-Schäffer A (2019) Iteratively refined feasibility checks in

robotic assembly sequence planning. Robotics and Automation

Letters 4(2): 1416–1423.

Silver D, van Hasselt H, Hessel M, et al. (2017) The predictron:

End-to-end learning and planning. In: International Confer-

ence on Machine Learning.

Silver T, Chitnis R, Curtis A, Tenenbaum J, Lozano-Perez T and

Kaelbling LP (2020) Planning with learned object importance

in large problem instances using graph neural networks. arXiv

preprint arXiv:2009.05613.

Simeonov A, Du Y, Kim B, et al. (2020) A long horizon planning

framework for manipulating rigid pointcloud objects. arXiv

preprint arXiv:2011.08177.

Srinivas A, Jabri A, Abbeel P, Levine S and Finn C (2018) Uni-

versal planning networks: Learning generalizable representa-

tions for visuomotor control. In: International Conference on

Machine Learning (ICML), pp. 4739–4748.

Srivastava S, Fang E, Riano L, Chitnis R, Russell SJ and Abbeel P

(2014) Combined task and motion planning through an extensi-

ble planner-independent interface layer. In: Proceedings of the

International Conference on Robotics and Automation (ICRA).

Suh H and Tedrake R (2020) The surprising effectiveness of linear

models for visual foresight in object pile manipulation. arXiv

preprint arXiv:2002.09093.

Tamar A, Wu Y, Thomas G, Levine S and Abbeel P (2016) Value

iteration networks. In: Advances in Neural Information Pro-

cessing Systems, pp. 2154–2162.

Toussaint M (2015) Logic-geometric programming: An

optimization-based approach to combined task and motion

planning. In: Proceedings of the Twenty-Fourth International

Joint Conference on Artificial Intelligence (IJCAI). AAAI

Press, pp. 1930–1936.

Toussaint M, Allen KR, Smith KA and Tenenbaum JB (2018) Dif-

ferentiable physics and stable modes for tool-use and manipu-

lation planning. In: Proceedings of Robotics: Science and

Systems (R:SS).

Toussaint M, Ha JS and Driess D (2020) Describing physics for

physical reasoning: Force-based sequential manipulation plan-

ning. arXiv preprint arXiv:2002.12780.

Toussaint M and Lopes M (2017) Multi-bound tree search for

logic-geometric programming in cooperative manipulation

domains. In: International Conference on Robotics and Auto-

mation (ICRA). IEEE, pp. 4044–4051.

Wang J, Lin S, Hu C, Zhu Y and Zhu L (2020) Learning semantic

keypoint representations for door opening manipulation. IEEE

Robotics and Automation Letters 5(4): 6980–6987.

Driess et al. 1465

Wang Z, Garrett CR, Kaelbling LP and Lozano-Pérez T (2018)

Active model learning and diverse action sampling for task and

motion planning. In: International Conference on Intelligent

Robots and Systems (IROS). IEEE, pp. 4107–4114.

Watter M, Springenberg JT, Boedecker J and Riedmiller MA

(2015) Embed to control: A locally linear latent dynamics

model for control from raw images. In: Advances in Neural

Information Processing Systems, pp. 2746–2754.

Wells AM, Dantam NT, Shrivastava A and Kavraki LE (2019)

Learning feasibility for task and motion planning in tabletop

environments. Robotics and Automation Letters 4(2):

1255–1262.

Wilson M and Hermans T (2019) Learning to manipulate object

collections using grounded state representations. In: Confer-

ence on Robot Learning.

Xie A, Ebert F, Levine S and Finn C (2019) Improvisation through

physical understanding: Using novel objects as tools with

visual foresight. In: Proceedings of Robotics: Science and Sys-

tems (R:SS).

Xu D, Mandlekar A, Martn-Martn R, Zhu Y, Savarese S and Fei-

Fei L (2020) Deep affordance foresight: Planning through what

can be done in the future. arXiv preprint arXiv:2011.08424.

Zhu Y, Tremblay J, Birchfield S and Zhu Y (2020) Hierarchical

planning for long-horizon manipulation with geometric and

symbolic scene graphs. arXiv preprint arXiv:2012.07277.

Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media type Description

Video Demonstration of the
planned motions both in
simulation and with a real
robot

1466 The International Journal of Robotics Research 40(12-14)

http://www.ijrr.org
http://www.youtube.com/user/ijrrmultimedia
http://www.youtube.com/user/ijrrmultimedia

