22 research outputs found

    Correction to:The genetic architecture of Plakophilin 2 cardiomyopathy (Genetics in Medicine, (2021), 23, 10, (1961-1968), 10.1038/s41436-021-01233-7)

    Get PDF
    Due to a processing error Cynthia James, Brittney Murray, and Crystal Tichnell were assigned to the wrong affiliation. Cynthia James, Brittney Murray, and Crystal Tichnell have as their affiliation 5 Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA. In addition Hana Zouk, Megan Hawley, and Birgit Funke were assigned only to affiliation 3; they also have affiliation 4 Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. The original article has been corrected

    Genotype–phenotype correlations in individuals with pathogenic RERE variants

    Get PDF
    Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7

    Genotype–phenotype correlations in individuals with pathogenic RERE variants

    Get PDF
    Heterozygous variants in the arginine‐glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin‐1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss‐of‐function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine‐rich region in the Atrophin‐1 domain. We have also identified a recurrent two‐amino‐acid duplication in this region that is associated with the development of a CHARGE syndrome‐like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7.We describe nine unrelated individuals who carry partial deletions or putatively deleterious sequence variants in RERE. An analysis of clinical and molecular data from individuals with mutations affecting RERE suggests the existence of novel genotype‐phenotype correlations and demonstrates that a high percentage of RERE pathogenic variants affect a histidine‐rich region in the Atrophin‐1 domain. We have also identified a recurrent two‐amino‐acid duplication in this region that is associated with the development of a CHARGE syndrome‐like phenotype.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143789/1/humu23400_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143789/2/humu23400.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143789/3/humu23400-sup-0001-SuppMat.pd

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study.

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 × 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity

    The genetic architecture of Plakophilin 2 cardiomyopathy

    Get PDF
    Purpose The genetic architecture of Plakophilin 2 (PKP2) cardiomyopathy can inform our understanding of its variant pathogenicity and protein function. Methods We assess the gene-wide and regional association of truncating and missense variants in PKP2 with arrhythmogenic cardiomyopathy (ACM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) specifically. A discovery data set compares genetic testing requisitions to gnomAD. Validation is performed in a rigorously phenotyped definite ARVC cohort and non-ACM individuals in the Geisinger MyCode cohort. Results The etiologic fraction (EF) of ACM-related diagnoses from truncating variants in PKP2 is significant (0.85 [0.80,0.88], p < 2 × 10−16), increases for ARVC specifically (EF = 0.96 [0.94,0.97], p < 2 × 10−16), and is highest in definite ARVC versus non-ACM individuals (EF = 1.00 [1.00,1.00], p < 2 × 10−16). Regions of missense variation enriched for ACM probands include known functional domains and the C-terminus, which was not previously known to contain a functional domain. No regional enrichment was identified for truncating variants. Conclusion This multicohort evaluation of the genetic architecture of PKP2 demonstrates the specificity of PKP2 truncating variants for ARVC within the ACM disease spectrum. We identify the PKP2 C-terminus as a potential functional domain and find that truncating variants likely cause disease irrespective of transcript position

    Doubting dung: eDNA reveals high rates of misidentification in diverse European ungulate communities

    No full text
    Pellet counts are widely used to monitor ungulates but rely on the assumption that pellets of different species are correctly identified in the field. Recent studies question this assumption using DNA barcoding techniques to check field identification rates. For Europe, which is undergoing a rapid shift towards more diverse ungulate assemblages, such an assessment is still missing. Using DNA barcoding on 3889 fecal samples from nine ungulate species in four European countries, we found average field misidentification rates varied from 0.6% for horse (Equus ferus) to 41.1% for roe deer (Capreolus capreolus). Most identification errors occurred between similar-sized species from the same taxonomic family. For a subset of samples from Sweden, we looked at the effect of dung morphometry, observer experience, and season on species identification success. Dung morphometry clearly distinguished moose (Alces alces) but not red (Cervus elaphus), roe, and fallow deer (Dama dama). Experienced observers performed better than novices for red and fallow deer although still making significant identification errors (26% and 17% incorrectly identified). Identification success was higher during spring and winter (x¯x \overline{x} = 86%) than summer and autumn (x¯x \overline{x} = 74%). We question pellet counts as an accurate monitoring tool where similar-sized species coexist and monitoring relates to the whole community. For this increasingly common situation across Europe, DNA testing or camera traps may be a better alternative. Pellet counts remain useful where only few species with clearly different dung morphology coexist (e.g., moose and roe deer) or when focused on species with distinctive dung morphology (e.g., moose)

    Doubting dung: eDNA reveals high rates of misidentification in diverse European ungulate communities

    Get PDF
    Pellet counts are widely used to monitor ungulates but rely on the assumption that pellets of different species are correctly identified in the field. Recent studies question this assumption using DNA barcoding techniques to check field identification rates. For Europe, which is undergoing a rapid shift towards more diverse ungulate assemblages, such an assessment is still missing. Using DNA barcoding on 3889 fecal samples from nine ungulate species in four European countries, we found average field misidentification rates varied from 0.6% for horse (Equus ferus) to 41.1% for roe deer (Capreolus capreolus). Most identification errors occurred between similar-sized species from the same taxonomic family. For a subset of samples from Sweden, we looked at the effect of dung morphometry, observer experience, and season on species identification success. Dung morphometry clearly distinguished moose (Alces alces) but not red (Cervus elaphus), roe, and fallow deer (Dama dama). Experienced observers performed better than novices for red and fallow deer although still making significant identification errors (26% and 17% incorrectly identified). Identification success was higher during spring and winter (x¯x \overline{x} = 86%) than summer and autumn (x¯x \overline{x} = 74%). We question pellet counts as an accurate monitoring tool where similar-sized species coexist and monitoring relates to the whole community. For this increasingly common situation across Europe, DNA testing or camera traps may be a better alternative. Pellet counts remain useful where only few species with clearly different dung morphology coexist (e.g., moose and roe deer) or when focused on species with distinctive dung morphology (e.g., moose)
    corecore