1,003 research outputs found

    Political Pressure and Political Interference in the function of the Judiciary

    Get PDF

    Due Process as a Management Tool in Schools and Prisons

    Get PDF
    This article will explore due process as an effective tool for the management of schools and prisons through a close scrutiny of the fourteenth amendment. The authors will attempt to identify emerging trends in case law and give special attention to Bell v. Wolfish, which may point to a new direction in due process analysis under the Burger Court. The purpose of this article is to propose radical reform of schools and prisons through the involvement of their populations and staffs in the rule-making process. Spawned by a firm belief that only through such democratic processes can the violence and brutality which frequently exist in both schools and prisons be effectively eradicated, the analysis entails an examination of a representative sampling of models which may hold promise for reform

    Symplectic No-core Shell-model Approach to Intermediate-mass Nuclei

    Full text link
    We present a microscopic description of nuclei in an intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through fifteen major shells to accommodate particle excitations that appear critical to highly-deformed spatial structures and the convergence of associated observables.Comment: 9 pages, 8 figure

    Emergence of cluster structures and collectivity within a no-core shell-model framework

    Get PDF
    An innovative symmetry-guided concept, which capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. Within this framework, ab initio applications of the theory to light nuclei reveal the origin of collective modes and the emergence a simple orderly pattern from first principles. This provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small fraction of the complete shell-model space, which, in turn, can be used to explore ultra-large model spaces for a description of alpha-cluster and highly deformed structures together with the associated rotations. We find that by using only a fraction of the model space extended far beyond current no-core shell-model limits and a long-range interaction that respects the symmetries in play, the outcome reproduces characteristic features of the low-lying 0+ states in 12 C (including the elusive Hoyle state and its 2+ excitation) and agrees with ab initio results in smaller spaces. This is achieved by selecting those particle configurations and components of the interaction found to be foremost responsible for the primary physics governing clustering phenomena and large spatial deformation in the ground-state and Hoyle-state rotational bands of 12 C. For these states, we offer a novel perspective emerging out of no-core shell-model considerations, including a discussion of associated nuclear deformation, matter radii, and density distribution. The framework we find is also extensible to negative-parity states (e.g., the 3-1 state in 12C) and beyond, namely, to the low-lying 0+ states of 8Be as well as the ground-state rotational band of Ne, Mg, and Si isotopes. The findings inform key features of the nuclear interaction and point to a new insight into the formation of highly-organized simple patterns in nuclear dynamics

    Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries

    Get PDF
    An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si

    HPC-enabled nuclear structure studies-description and applications of the symmetry-adapted no-core shell model

    Get PDF
    By exploiting symmetries that enable the accounting of vital collective correlations in nuclei, we achieve significantly reduced dimensions for equivalent ultra-large model spaces, and hence resolve the scale explosion problem in nuclear structure calculations, i.e, the explosive growth in computational resource demands with increasing number of particles and size of the spaces in which they reside. As a result, we provide-with the help of High Performance Computing (HPC) resources-first solutions for selected benchmark calculations with remarkable findings of large-deformation and low-spin dominance in low-lying nuclear states. In the framework of a complementary symmetry-adapted study, one is able, facilitated by symmetry-preserving pieces of the inter-nucleon interaction, to accommodate unprecedented shell-model spaces critical to capture the physics governing the Hoyle state in 12C, thereby addressing a 60-year-old puzzle on the emergence of cluster substructures within a no-core shell model framework. All of these findings underline the key role of symmetries in nuclear structure studies

    Emergent symmetries in atomic nuclei from first principles

    Get PDF
    An innovative symmetry-guided approach and its applications to light and intermediate-mass nuclei is discussed. This approach, with Sp(3, R) the underpinning group, is based on our recent remarkable finding, namely, we have identified the symplectic Sp(3,R) as an approximate symmetry for low-energy nuclear dynamics. This study presents the results of two complementary studies, one that utilizes realistic nucleon-nucleon interactions and unveils symmetries inherent to nuclear dynamics from first principles (or ab initio), and another study, which selects important components of the nuclear interaction to explain the primary physics responsible for emergent phenomena, such as enhanced collectivity and alpha clusters. In particular, within this symmetry-guided framework, ab initio applications of the theory to light nuclei reveal the emergence of a simple orderly pattern from first principles. This provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small fraction of the complete shell-model space, which, in turn, can be used to explore ultra-large model spaces for a description of alpha-cluster and highly deformed structures together with associated rotations. We find that by using only a fraction of the model space extended far beyond current no-core shell-model limits and a long-range interaction that respects the symmetries in play, the outcome reproduces characteristic features of the low-lying 0+ states in 12C (including the elusive Hoyle state of importance to astrophysics) and agrees with ab initio results in smaller spaces. For these states, we offer a novel perspective emerging out of no-core shell-model considerations, including a discussion of associated nuclear deformation, matter radii, and density distribution. The framework we find is also extensible beyond 12C, namely, to the low-lying 0+ states of 8Be as well as the ground-state rotational band of Ne, Mg, and Si isotopes

    Symmetry-Adapted Ab Initio Open Core Shell Model Theory

    Get PDF
    By using only a fraction of the model space, we gain further insight - within a symmetry-guided no-core shell model framework - into the many-body nuclear dynamics that gives rise to important single-particle configurations together with correlated highly-deformed and alpha-cluster structures. We show results of the novel ab initio symmetry-adapted no-core shell model for large-scale nuclear structure computations. In addition, we use the symmetry patterns unveiled in these results to explore ultra-large model spaces. © Published under licence by IOP Publishing Ltd

    No-core Symplectic Model: Exploiting Hidden Symmetry in Atomic Nuclei

    Get PDF
    We report on recent developments within the framework of the no-core symplectic shell model (NCSpM) that complements the no-core shell model (Navrátil, Vary, and Barrett) by exploiting the algebraic features of the symplectic shell model (Rowe and Rosensteel) while also allowing for high-performance computing applications, but in highly truncated, physically relevant subspaces of the complete space. The leading symplectic symmetry typically accounts for 70% to 90% of the structure of the low-lying states, a result that is only moderately dependent on the details of the selected inter-nucleon interaction. Examples for6Li,12C,16O, and20Ne are shown to illustrate the efficacy the NCSpM, and as well the strong overlap with cluster-like and pairing configurations that dominate the dynamics of low-lying states in these nuclei

    Understanding emergent collectivity and clustering in nuclei from a symmetry-based no-core shell-model perspective

    Get PDF
    We present a detailed discussion of the structure of the low-lying positive-parity energy spectrum of C12 from a no-core shell-model perspective. The approach utilizes a fraction of the usual shell-model space and extends its multishell reach via the symmetry-based no-core symplectic shell model (NCSpM) with a simple, physically informed effective interaction. We focus on the ground-state rotational band, the Hoyle state, and its 2+ and 4+ excitations, as well as the giant monopole 0+ resonance, which is a vibrational breathing mode of the ground state. This, in turn, allows us to address the open question about the structure of the Hoyle state and its rotational band. In particular, we find that the Hoyle state is best described through deformed prolate collective modes rather than vibrational modes, while we show that the higher lying giant monopole 0+ resonance resembles the oblate deformation of the C12 ground state. In addition, we identify the giant monopole 0+ and quadrupole 2+ resonances of selected light- and intermediate-mass nuclei, along with other observables of C12, including matter rms radii, electric quadrupole moments, and E2 and E0 transition rates
    corecore