1,570 research outputs found

    Molecular Motor Constructed from a Double-Walled Carbon Nanotube Driven by Axially Varying Voltage

    Full text link
    A new molecular motor is conceptually constructed from a double-walled carbon nanotube (DWNT) consisting of a long inner single-walled carbon nanotube (SWNT) and a short outer SWNT with different chirality. The interaction between inner and outer tubes is the sum of the Lennard-Jones potentials between carbon atoms in inner tube and those in outer one. Within the framework of Smoluchowski-Feynman ratchet, it is theoretically shown that this system in an isothermal bath will exhibit a unidirectional rotation in the presence of a varying axial electrical voltage.Comment: 11 pages + 3 figure

    Atomic scale engines: Cars and wheels

    Full text link
    We introduce a new approach to build microscopic engines on the atomic scale that move translationally or rotationally and can perform useful functions such as pulling of a cargo. Characteristic of these engines is the possibility to determine dynamically the directionality of the motion. The approach is based on the transformation of the fed energy to directed motion through a dynamical competition between the intrinsic lengths of the moving object and the supporting carrier.Comment: 4 pages, 3 figures (2 in color), Phys. Rev. Lett. (in print

    Fragmentation pathways of nanofractal structures on surface

    Full text link
    We present a detailed systematical theoretical analysis of the post-growth processes occurring in nanofractals grown on surface. For this study we developed a method which accounts for the internal dynamics of particles in a fractal. We demonstrate that particle diffusion and detachment controls the shape of the emerging stable islands on surface. We consider different scenarios of fractal post-growth relaxation and analyze the time evolution of the island's morphology. The results of our calculations are compared with available experimental observations, and experiments in which the post-growth relaxation of deposited nanostructures can be probed are suggested.Comment: 34 pages, 11 figure

    Magnetoplasmon excitations in an array of periodically modulated quantum wires

    Full text link
    Motivated by the recent experiment of Hochgraefe et al., we have investigated the magnetoplasmon excitations in a periodic array of quantum wires with a periodic modulation along the wire direction. The equilibrium and dynamic properties of the system are treated self-consistently within the Thomas-Fermi-Dirac-von Weizsaecker approximation. A calculation of the dynamical response of the system to a far-infrared radiation field reveals a resonant anticrossing between the Kohn mode and a finite-wavevector longitudinal excitation which is induced by the density modulation along the wires. Our theoretical calculations are found to be in excellent agreement with experiment.Comment: 9 pages, 8 figure

    Molecular Motor of Double-Walled Carbon Nanotube Driven by Temperature Variation

    Full text link
    An elegant formula for coordinates of carbon atoms in a unit cell of a single-walled nanotube (SWNT) is presented and a new molecular motor of double-walled carbon nanotube whose inner tube is a long (8,4) SWNT and outer tube a short (14,8) SWNT is constructed. The interaction between inner an outer tubes is analytically derived by summing the Lennard-Jones potentials between atoms in inner and outer tubes. It is proved that the molecular motor in a thermal bath exhibits a directional motion with the temperature variation of the bath.Comment: 9 pages, 4 figures, revtex

    Fluctuating-friction molecular motors

    Full text link
    We show that the correlated stochastic fluctuation of the friction coefficient can give rise to long-range directional motion of a particle undergoing Brownian random walk in a constant periodic energy potential landscape. The occurrence of this motion requires the presence of two additional independent bodies interacting with the particle via friction and via the energy potential, respectively, which can move relative to each other. Such three-body system generalizes the classical Brownian ratchet mechanism, which requires only two interacting bodies. In particular, we describe a simple two-level model of fluctuating-friction molecular motor that can be solved analytically. In our previous work [M.K., L.M and D.P. 2000 J. Nonlinear Opt. Phys. Mater. vol. 9, 157] this model has been first applied to understanding the fundamental mechanism of the photoinduced reorientation of dye-doped liquid crystals. Applications of the same idea to other fields such as molecular biology and nanotechnology can however be envisioned. As an example, in this paper we work out a model of the actomyosin system based on the fluctuating-friction mechanism.Comment: to be published in J. Physics Condensed Matter (http://www.iop.org/Journals/JPhysCM

    Multi-Exciton Spectroscopy of a Single Self Assembled Quantum Dot

    Get PDF
    We apply low temperature confocal optical microscopy to spatially resolve, and spectroscopically study a single self assembled quantum dot. By comparing the emission spectra obtained at various excitation levels to a theoretical many body model, we show that: Single exciton radiative recombination is very weak. Sharp spectral lines are due to optical transitions between confined multiexcitonic states among which excitons thermalize within their lifetime. Once these few states are fully occupied, broad bands appear due to transitions between states which contain continuum electrons.Comment: 12 pages, 4 figures, submitted for publication on Jan,28 199

    Spin-polarized electric currents in diluted magnetic semiconductor heterostructures induced by terahertz and microwave radiation

    Get PDF
    We report on the study of spin-polarized electric currents in diluted magnetic semiconductor (DMS) quantum wells subjected to an in-plane external magnetic field and illuminated by microwave or terahertz radiation. The effect is studied in (Cd,Mn)Te/(Cd,Mg)Te quantum wells (QWs) and (In,Ga)As/InAlAs:Mn QWs belonging to the well known II-VI and III-V DMS material systems, as well as, in heterovalent AlSb/InAs/(Zn,Mn)Te QWs which represent a promising combination of II-VI and III-V semiconductors. Experimental data and developed theory demonstrate that the photocurrent originates from a spin-dependent scattering of free carriers by static defects or phonons in the Drude absorption of radiation and subsequent relaxation of carriers. We show that in DMS structures the efficiency of the current generation is drastically enhanced compared to non-magnetic semiconductors. The enhancement is caused by the exchange interaction of carrier spins with localized spins of magnetic ions resulting, on the one hand, in the giant Zeeman spin-splitting, and, on the other hand, in the spin-dependent carrier scattering by localized Mn2+ ions polarized by an external magnetic field.Comment: 14 pages, 13 figure

    Polarization-sensitive quantum-optical coherence tomography

    Full text link
    We set forth a polarization-sensitive quantum-optical coherence tomography (PS-QOCT) technique that provides axial optical sectioning with polarization-sensitive capabilities. The technique provides a means for determining information about the optical path length between isotropic reflecting surfaces, the relative magnitude of the reflectance from each interface, the birefringence of the interstitial material, and the orientation of the optical axis of the sample. PS-QOCT is immune to sample dispersion and therefore permits measurements to be made at depths greater than those accessible via ordinary optical coherence tomography. We also provide a general Jones matrix theory for analyzing PS-QOCT systems and outline an experimental procedure for carrying out such measurements.Comment: 15 pages, 5 figures, to appear in Physical Review

    The percentage of CD133+ cells in human colorectal cancer cell lines is influenced by Mycoplasma hyorhinis infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mollicutes </it>contamination is recognized to be a critical issue for the cultivation of continuous cell lines. In this work we characterized the effect of <it>Mycoplasma hyorhinis </it>contamination on CD133 expression in human colon cancer cell lines.</p> <p>Methods</p> <p>MycoAlert<sup>® </sup>and mycoplasma agar culture were used to detect mycoplasma contamination on GEO, SW480 and HT-29 cell lines. Restriction fragment length polymorphism assay was used to determine mycoplasma species. All cellular models were decontaminated by the use of a specific antibiotic panel (Enrofloxacin, Ciprofloxacin, BM Cyclin 1 and 2, Mycoplasma Removal Agent and MycoZap<sup>®</sup>). The percentage of CD133 positive cells was analyzed by flow cytometry on GEO, SW480 and HT-29 cell lines, before and after <it>Mycoplasma hyorhinis </it>eradication.</p> <p>Results</p> <p><it>Mycoplasma hyorhinis </it>infected colon cancer cell lines showed an increased percentage of CD133+ cells as compared to the same cell lines rendered mycoplasma-free by effective exposure to antibiotic treatment. The percentage of CD133 positive cells increased again when mycoplasma negative cells were re-infected by <it>Mycoplasma hyorhinis</it>.</p> <p>Conclusions</p> <p><it>Mycoplasma hyorhinis </it>infection has an important role on the quality of cultured human colon cancer cell lines giving a false positive increase of cancer stem cells fraction characterized by CD133 expression. Possible explanations are (i) the direct involvement of Mycoplasma on CD133 expression or (ii) the selective pressure on a subpopulation of cells characterized by constitutive CD133 expression.</p> <p>In keeping with United Kingdom Coordinating Committee on Cancer Research (UKCCCR) guidelines, the present data indicate the mandatory prerequisite, for investigators involved in human colon cancer research area, of employing mycoplasma-free cell lines in order to avoid the production of non-reproducible or even false data.</p
    corecore