272 research outputs found

    Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in Human and Other Primate Cell Lines

    Get PDF
    The high prevalence of contaminated cell cultures suggests that viral contaminations might be distributed among cultures. We investigated more than 460 primate cell lines for Epstein-Barr (EBV), hepatitis B (HBV), hepatitis C (HCV), human immunodeficiency virus type 1 (HIV-1), human T-cell leukemia/lymphoma virus I and II (HTLV-I/-II), and squirrel monkey retrovirus (SMRV) infections for risk assessment. None of the cell lines were infected with HCV, HIV-1, or HTLV-I/-II. However, one cell line displayed reverse transcriptase activity. Thirty-nine cell lines harbored EBV DNA sequences. Studies on the lytic phase of EBV revealed that five cell lines produce EBV particles and six further cell lines produced EBV upon stimulation. One cell line contained an integrated HBV genome fragment but showed no virus production. Six cell lines were SMRV-infected. Newly established cell lines should be tested for EBV infections to detect B-lymphoblastoid cell lines (B-LCL). B-LCLs established with EBV from cell line B95-8 should be tested for SMRV infections

    Hypomethylation and expression of BEX2, IGSF4 and TIMP3 indicative of MLL translocations in Acute Myeloid Leukemia

    Get PDF
    Background Translocations of the Mixed Lineage Leukemia (MLL) gene occur in a subset (5%) of acute myeloid leukemias (AML), and in mixed phenotype acute leukemias in infancy - a disease with extremely poor prognosis. Animal model systems show that MLL gain of function mutations may contribute to leukemogenesis. Wild-type (wt) MLL possesses histone methyltransferase activity and functions at the level of chromatin organization by affecting the expression of specific target genes. While numerous MLL fusion proteins exert a diverse array of functions, they ultimately serve to induce transcription of specific genes. Hence, acute lymphoblastic leukemias (ALL) with MLL mutations (MLLmu) exhibit characteristic gene expression profiles including high-level expression of HOXA cluster genes. Here, we aimed to relate MLL mutational status and tumor suppressor gene (TSG) methylation/expression in acute leukemia cell lines. Results Using MS-MLPA (methylation-specific multiplex ligation-dependent probe amplification assay), methylation of 24 different TSG was analyzed in 28 MLLmu and MLLwt acute leukemia cell lines. On average, 1.8/24 TSG were methylated in MLLmu AML cells, while 6.2/24 TSG were methylated in MLLwt AML cells. Hypomethylation and expression of the TSG BEX2, IGSF4 and TIMP3 turned out to be characteristic of MLLmu AML cell lines. MLLwt AML cell lines displayed hypermethylated TSG promoters resulting in transcriptional silencing. Demethylating agents and inhibitors of histone deacetylases restored expression of BEX2, IGSF4 and TIMP3, confirming epigenetic silencing of these genes in MLLwt cells. The positive correlation between MLL translocation, TSG hypomethylation and expression suggested that MLL fusion proteins were responsible for dysregulation of TSG expression in MLLmu cells. This concept was supported by our observation that Bex2 mRNA levels in MLL-ENL transgenic mouse cell lines required expression of the MLL fusion gene. Conclusion These results suggest that the conspicuous expression of the TSG BEX2, IGSF4 and TIMP3 in MLLmu AML cell lines is the consequence of altered epigenetic properties of MLL fusion proteins

    Polycomb repressor complex 2 regulates HOXA9 and HOXA10, activating ID2 in NK/T-cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>NK- and T-cells are closely related lymphocytes, originating from the same early progenitor cells during hematopoiesis. In these differentiation processes deregulation of developmental genes may contribute to leukemogenesis. Here, we compared expression profiles of NK- and T-cell lines for identification of aberrantly expressed genes in T-cell acute lymphoblastic leukemia (T-ALL) which physiologically regulate the differentiation program of the NK-cell lineage.</p> <p>Results</p> <p>This analysis showed high expression levels of HOXA9, HOXA10 and ID2 in NK-cell lines in addition to T-cell line LOUCY, suggesting leukemic deregulation therein. Overexpression experiments, chromatin immuno-precipitation and promoter analysis demonstrated that HOXA9 and HOXA10 directly activated expression of ID2. Concomitantly elevated expression levels of HOXA9 and HOXA10 together with ID2 in cell lines containing MLL translocations confirmed this form of regulation in both ALL and acute myeloid leukemia. Overexpression of HOXA9, HOXA10 or ID2 resulted in repressed expression of apoptosis factor BIM. Furthermore, profiling data of genes coding for chromatin regulators of homeobox genes, including components of polycomb repressor complex 2 (PRC2), indicated lacking expression of EZH2 in LOUCY and exclusive expression of HOP in NK-cell lines. Subsequent treatment of T-cell lines JURKAT and LOUCY with DZNep, an inhibitor of EZH2/PRC2, resulted in elevated and unchanged HOXA9/10 expression levels, respectively. Moreover, siRNA-mediated knockdown of EZH2 in JURKAT enhanced HOXA10 expression, confirming HOXA10-repression by EZH2. Additionally, profiling data and overexpression analysis indicated that reduced expression of E2F cofactor TFDP1 contributed to the lack of EZH2 in LOUCY. Forced expression of HOP in JURKAT cells resulted in reduced HOXA10 and ID2 expression levels, suggesting enhancement of PRC2 repression.</p> <p>Conclusions</p> <p>Our results show that major differentiation factors of the NK-cell lineage, including HOXA9, HOXA10 and ID2, were (de)regulated via PRC2 which therefore contributes to T-cell leukemogenesis.</p

    SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute lymphoblastic leukemia-derived cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>SET-NUP214 </it>fusion resulting from a recurrent cryptic deletion, del(9)(q34.11q34.13) has recently been described in T-cell acute lymphoblastic leukemia (T-ALL) and in one case of acute myeloid leukemia (AML). The fusion protein appears to promote elevated expression of <it>HOXA </it>cluster genes in T-ALL and may contribute to the pathogenesis of the disease. We screened a panel of ALL and AML cell lines for <it>SET-NUP214 </it>expression to find model systems that might help to elucidate the cellular function of this fusion gene.</p> <p>Results</p> <p>Of 141 human leukemia/lymphoma cell lines tested, only the T-ALL cell line LOUCY and the AML cell line MEGAL expressed the <it>SET(TAF-</it>Iβ)-<it>NUP214 </it>fusion gene transcript. RT-PCR analysis specifically recognizing the alternative first exons of the two <it>TAF-</it>I isoforms revealed that the cell lines also expressed <it>TAF-</it>Iα-<it>NUP214 </it>mRNA. Results of fluorescence in situ hybridization (FISH) and array-based copy number analysis were both consistent with del(9)(q34.11q34.13) as described. Quantitative genomic PCR also confirmed loss of genomic material between <it>SET </it>and <it>NUP214 </it>in both cell lines. Genomic sequencing localized the breakpoints of the <it>SET </it>gene to regions downstream of the stop codon and to <it>NUP214 </it>intron 17/18 in both LOUCY and MEGAL cells. Both cell lines expressed the 140 kDa SET-NUP214 fusion protein.</p> <p>Conclusion</p> <p>Cell lines LOUCY and MEGAL express the recently described <it>SET-NUP214 </it>fusion gene. Of special note is that the formation of the <it>SET </it>exon 7/<it>NUP214 </it>exon 18 gene transcript requires alternative splicing as the <it>SET </it>breakpoint is located downstream of the stop codon in exon 8. The cell lines are promising model systems for <it>SET-NUP214 </it>studies and should facilitate investigating cellular functions of the the SET-NUP214 protein.</p

    DNA methylation regulates expression of VEGF-R2 (KDR) and VEGF-R3 (FLT4)

    Get PDF
    Abstract Background Vascular Endothelial Growth Factors (VEGFs) and their receptors (VEGF-Rs) are important regulators for angiogenesis and lymphangiogenesis. VEGFs and VEGF-Rs are not only expressed on endothelial cells but also on various subtypes of solid tumors and leukemias contributing to the growth of the malignant cells. This study was performed to examine whether VEGF-R2 (KDR) and VEGF-R3 (FLT4) are regulated by DNA methylation. Methods Real-time (RT) PCR analysis was performed to quantify KDR and FLT4 expression in some ninety leukemia/lymphoma cell lines, human umbilical vein endothelial cells (HUVECs) and dermal microvascular endothelial cells (HDMECs). Western blot analyses and flow cytometric analyses confirmed results at the protein level. After bisulfite conversion of DNA we determined the methylation status of KDR and FLT4 by DNA sequencing and by methylation specific PCR (MSP). Western blot analyses were performed to examine the effect of VEGF-C on p42/44 MAPK activation. Results Expression of KDR and FLT4 was observed in cell lines from various leukemic entities, but not in lymphoma cell lines: 16% (10/62) of the leukemia cell lines expressed KDR, 42% (27/65) were FLT4 positive. None of thirty cell lines representing six lymphoma subtypes showed more than marginal expression of KDR or FLT4. Western blot analyses confirmed KDR and FLT4 protein expression in HDMECs, HUVECs and in cell lines with high VEGF-R mRNA levels. Mature VEGF-C induced p42/44 MAPK activation in the KDR- /FLT4+ cell line OCI-AML1 verifying the model character of this cell line for VEGF-C signal transduction studies. Bisulfite sequencing and MSP revealed that GpG islands in the promoter regions of KDR and FLT4 were unmethylated in HUVECs, HDMECs and KDR + and FLT4 + cell lines, whereas methylated cell lines did not express these genes. In hypermethylated cell lines, KDR and FLT4 were re-inducible by treatment with the DNA demethylating agent 5-Aza-2'deoxycytidine, confirming epigenetic regulation of both genes. Conclusions Our data show that VEGF-Rs KDR and FLT4 are silenced by DNA methylation. However, if the promoters are unmethylated, other factors (e.g. transactivation factors) determine the extent of KDR and FLT4 expression

    Конкурентоспособность фирм в условиях рыночной экономики

    Get PDF
    Анализ эффективности организации коммерческой деятельности предприятия и оценка конкурентоспособности фирмы. Исследование и разработка системы повышения конкурентоспособности предприятия рынка рекламных услуг.Analysis of the effectiveness of the organization of commercial activities of the enterprise and evaluation of the firm's competitiveness. Research and development of a system for increasing the competitiveness of a service enterprise

    B‐cell receptors of EBV‐negative Burkitt lymphoma bind modified isoforms of autoantigens

    Get PDF
    Burkitt lymphoma (BL) represents the most aggressive B‐cell‐lymphoma. Beside the hallmark of IG‐MYC‐translocation, surface B‐cell receptor (BCR) is expressed, and mutations in the BCR pathway are frequent. Coincidental infections in endemic BL, and specific extra‐nodal sites suggest antigenic triggers. To explore this hypothesis, BCRs of BL cell lines and cases were screened for reactivities against a panel of bacterial lysates, lysates of Plasmodium falciparum, a custom‐made virome array and against self‐antigens, including post‐translationally modified antigens. An atypically modified, SUMOylated isoform of Bystin, that is, SUMO1‐BYSL was identified as the antigen of the BCR of cell line CA46. SUMO1‐BYSL was exclusively expressed in CA46 cells with K139 as site of the SUMOylation. Secondly, an atypically acetylated isoform of HSP40 was identified as the antigen of the BCR of cell line BL41. K104 and K179 were the sites of immunogenic acetylation, and the acetylated HSP40 isoform was solely present in BL41 cells. Functionally, addition of SUMO1‐BYSL and acetylated HSP40 induced BCR pathway activation in CA46 and BL41 cells, respectively. Accordingly, SUMO1‐BYSL‐ETA’ immunotoxin, produced by a two‐step intein‐based conjugation, led to the specific killing of CA46 cells. Autoantibodies directed against SUMO1‐BYSL were found in 3 of 14 (21.4%), and autoantibodies against acetylated HSP40 in 1/14(7.1%) patients with sporadic Burkitt‐lymphoma. No reactivities against antigens of the infectious agent spectrum could be observed. These results indicate a pathogenic role of autoreactivity evoked by immunogenic post‐translational modifications in a subgroup of sporadic BL including two EBV‐negative BL cell lines

    BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>BCR-ABL1 </it>translocation occurs in chronic myeloid leukemia (CML) and in 25% of cases with acute lymphoblastic leukemia (ALL). The advent of tyrosine kinase inhibitors (TKI) has fundamentally changed the treatment of CML. However, TKI are not equally effective for treating ALL. Furthermore, <it>de novo </it>or <it>secondary </it>TKI-resistance is a significant problem in CML. We screened a panel of <it>BCR-ABL1 </it>positive ALL and CML cell lines to find models for imatinib-resistance.</p> <p>Results</p> <p>Five of 19 <it>BCR-ABL1 </it>positive cell lines were resistant to imatinib-induced apoptosis (KCL-22, MHH-TALL1, NALM-1, SD-1, SUP-B15). None of the resistant cell lines carried mutations in the kinase domain of <it>BCR-ABL1 </it>and all showed resistance to second generation TKI, nilotinib or dasatinib. STAT5, ERK1/2 and the ribosomal S6 protein (RPS6) are <it>BCR-ABL1 </it>downstream effectors, and all three proteins are dephosphorylated by imatinib in sensitive cell lines. TKI-resistant phosphorylation of RPS6, but responsiveness as regards JAK/STAT5 and ERK1/2 signalling were characteristic for resistant cell lines. PI3K pathway inhibitors effected dephosphorylation of RPS6 in imatinib-resistant cell lines suggesting that an oncogene other than <it>BCR-ABL1 </it>might be responsible for activation of the PI3K/AKT1/mTOR pathway, which would explain the TKI resistance of these cells. We show that the TKI-resistant cell line KCL-22 carries a PI3Kα E545G mutation, a site critical for the constitutive activation of the PI3K/AKT1 pathway. Apoptosis in TKI-resistant cells could be induced by inhibition of AKT1, but not of mTOR.</p> <p>Conclusion</p> <p>We introduce five Philadelphia-chromosome positive cell lines as TKI-resistance models. None of these cell lines carries mutations in the kinase domain of <it>BCR-ABL1 </it>or other molecular aberrations previously indicted in the context of imatinib-resistance. These cell lines are unique as they dephosphorylate ERK1/2 and STAT5 after treatment with imatinib, while PI3K/AKT1/mTOR activity remains unaffected. Inhibition of AKT1 leads to apoptosis in the imatinib-resistant cell lines. In conclusion, Ph+ cell lines show a form of imatinib-resistance attributable to constitutive activation of the PI3K/AKT1 pathway. Mutations in <it>PIK3CA</it>, as observed in cell line KCL-22, or PI3K activating oncogenes may undelie TKI-resistance in these cell lines.</p
    corecore