96 research outputs found

    DNA barcoding reveals unexpected diversity of deep-sea octopuses in the north-east Atlantic

    Get PDF
    The taxonomy of Bathypolypus and Muusoctopus has long been confounded by poor original descriptions and difficulty in distinguishing among species morphologically. We aimed to use DNA barcoding in conjunction with species delimitation techniques and morphological identification of mature males to identify the species of Bathypolypus and Muusoctopus present in the North-east Atlantic and provide additional information on species distributions. From 298 specimens collected during biannual Deepwater Timeseries cruises and other aligned surveys undertaken by Marine Scotland onboard MRV Scotia between 2005–19, we identified Bathypolypus arcticus, B. ergasticus, B. bairdii, B. sponsalis, B. pugniger, Muusoctopus normani and M. johnsonianus as well as an unidentified Muusoctopus species that we conclude is likely to be a new species. We show the utility of DNA barcoding in identifying difficult to distinguish species such as deep-sea octopuses. Studies like ours are essential to provide clarity on the taxonomy of such groups and to determine the true diversity and distribution of species within them

    The effect of synthesis gas composition on the performance of Ni-based solid oxide fuel cells

    Get PDF
    An increased interest in using hydrocarbons in solid oxide fuel cells for the production of power has led to research into operation on synthesis (syn) gas, a mixture of hydrogen and carbon monoxide. Hydrocarbons are typically reformed, either internally or in an external reformer prior to the fuel cell, producing syngas with various H2:CO ratios depending on the hydrocarbon used. This paper examines the effect of varying the H2:CO ratio with respect to C1 to C4 steam reforming reactions and additionally a mixture containing a higher ratio of carbon monoxide. It was found that there was no significant relationship between cell performance and H2:CO ratio when a high feed rate was employed. For low flow rates, however, the high carbon monoxide concentration resulted in a significant decrease in cell performance. It was determined that this was caused by reversible carbon deposition as opposed to a decrease in carbon monoxide reactivity

    Genome skimming elucidates the evolutionary history of Octopoda

    Get PDF
    Phylogenies for Octopoda have, until now, been based on morphological characters or a few genes. Here we provide the complete mitogenomes and the nuclear 18S and 28S ribosomal genes of twenty Octopoda specimens, comprising 18 species of Cirrata and Incirrata, representing 13 genera and all five putative families of Cirrata (Cirroctopodidae, Cirroteuthidae, Grimpoteuthidae, Opisthoteuthidae and Stauroteuthidae) and six families of Incirrata (Amphitretidae, Argonautidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, and Megaleledonidae) which were assembled using genome skimming. Phylogenetic trees were built using Maximum Likelihood and Bayesian Inference with several alignment matrices. All mitochondrial genomes had the ‘typical’ genome composition and gene order previously reported for octopodiforms, except Bathypolypus ergasticus, which appears to lack ND5, two tRNA genes that flank ND5 and two other tRNA genes. Argonautoidea was revealed as sister to Octopodidae by the mitochondrial protein-coding gene dataset, however, it was recovered as sister to all other incirrate octopods with strong support in an analysis using nuclear rRNA genes. Within Cirrata, our study supports two existing classifications suggesting neither is likely in conflict with the true evolutionary history of the suborder. Genome skimming is useful in the analysis of phylogenetic relationships within Octopoda; inclusion of both mitochondrial and nuclear data may be key

    Engaging Undergraduate Students in Research

    Get PDF
    A primary goal of undergraduate education is to provide a comprehensive and diverse educational experience to prepare and promote student success in their professional and personal pursuits. Increased academic success and program connectivity have been demonstrated when undergraduate students are engaged in research early in their degree programs. Despite the known benefits of undergraduates engaging in research, there are challenges associated with conducting undergraduate research programs. Reported barriers include the lack of student knowledge about research methods, lack of preparedness, and lack of student identification and understanding of their specific interests which may not facilitate research ideas and affinity to conduct research. Additional challenges are related to the lack of faculty resources (e.g., time, specific equipment, research space, etc.), the ability to train and supervise undergraduates who may have very limited or no research experience and those students who are true beginners lacking foundational skills. Moreover, involving, engaging, and supporting underrepresented students (e.g., first-generation college students, females, ethnic minorities) in undergraduate research experiences can require different approaches for mentors to be effective. The “Engaging Undergraduate Students in Research” workshop was organized by the Vice Presidents of the American Society for Horticultural Science (ASHS) Research and Education Divisions at the ASHS 2022 Annual Conference in Chicago, IL, USA. The workshop featured three speakers who described their experiences engaging undergraduate students in research. After each speaker provided comments for ≈5 minutes, the workshop attendees self-selected into three breakout groups with the speakers for roundtable discussions related to engaging students in research through coursework, engaging students via formal research projects, and engaging underrepresented students in research. After the breakout group discussions, a summary was given by each group, and whole group discussions and comments were facilitated. This is a summary of the information discussed and shared during the workshop, along with information that can assist faculty with developing and implementing undergraduate research experiences

    Genome skimming elucidates the evolutionary history of Octopoda

    Get PDF
    11 pages, 5 figures, 3 tables, supplementary data https://doi.org/10.1016/j.ympev.2023.107729Phylogenies for Octopoda have, until now, been based on morphological characters or a few genes. Here we provide the complete mitogenomes and the nuclear 18S and 28S ribosomal genes of twenty Octopoda specimens, comprising 18 species of Cirrata and Incirrata, representing 13 genera and all five putative families of Cirrata (Cirroctopodidae, Cirroteuthidae, Grimpoteuthidae, Opisthoteuthidae and Stauroteuthidae) and six families of Incirrata (Amphitretidae, Argonautidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, and Megaleledonidae) which were assembled using genome skimming. Phylogenetic trees were built using Maximum Likelihood and Bayesian Inference with several alignment matrices. All mitochondrial genomes had the ‘typical’ genome composition and gene order previously reported for octopodiforms, except Bathypolypus ergasticus, which appears to lack ND5, two tRNA genes that flank ND5 and two other tRNA genes. Argonautoidea was revealed as sister to Octopodidae by the mitochondrial protein-coding gene dataset, however, it was recovered as sister to all other incirrate octopods with strong support in an analysis using nuclear rRNA genes. Within Cirrata, our study supports two existing classifications suggesting neither is likely in conflict with the true evolutionary history of the suborder. Genome skimming is useful in the analysis of phylogenetic relationships within Octopoda; inclusion of both mitochondrial and nuclear data may be keyThis work was funded by a Tony Ryan Fellowship and an Irish Research Council postgraduate scholarship (GOIPG/2017/1740) to MT. FÁF-Á was supported by an Irish Research Council–Government of Ireland Postdoctoral Fellowship Award (ref. GOIPD/2019/460) and a JdC-I Postdoctoral Fellowship Grant (ref. IJC2020-043170-I) awarded by MCIN/AEI /10.13039/501100011033 and the European Union NextGenerationEU/PRTR. This research was supported by the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S). We are grateful to two anonymous referees for their thoughtful contributionsPeer reviewe

    School Surveillance, Control, and Resistance in the United Kingdom

    Get PDF
    This chapter outlines the development of the current socio-political context within which U.K. schools experience surveillance and implement their security and disciplinary procedures. Schools are suggested to have developed their approaches to social control against a background of neoliberalism and audit culture. This involves the marketisation of much of the school system through an ‘academisation’ process; linked to this is an increased surveillance of teachers and students through datafication, CCTV and other digital means. Another form of surveillance- biopolitical control in schools- shows itself through the traditionalisation of gendered school uniform and the increasing pathologisation of the behaviour of ethnic minorities
    corecore