5,096 research outputs found

    Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline)

    Get PDF
    Measurements of the effect of a magnetic field on the light output and current through an organic light emitting diode made with deuterated aluminium tris(8-hydroxyquinoline) have shown that hyperfine coupling with protons is not the cause of the intrinsic organic magnetoresistance. We suggest that interactions with unpaired electrons in the device may be responsible.Comment: Submitte

    Effect of excited states and applied magnetic fields on the measured hole mobility in an organic semiconductor

    Get PDF
    Copyright 2010 by the American Physical Society. Article is available at

    Infrared Hall effect in high Tc superconductors: Evidence for non-Fermi liquid Hall scattering

    Full text link
    Infrared (20-120 cm-1 and 900-1100 cm-1) Faraday rotation and circular dichroism are measured in high Tc superconductors using sensitive polarization modulation techniques. Optimally doped YBCO thin films are studied at temperatures down to 15 K and magnetic fields up to 8 T. At 1000 cm-1 the Hall conductivity varies strongly with temperature in contrast to the longitudinal conductivity which is nearly independent of temperature. The Hall scattering rate has a T^2 temperature dependence but, unlike a Fermi liquid, depends only weakly on frequency. The experiment puts severe constraints on theories of transport in the normal state of high Tc superconductors.Comment: 8 pages, 3 figure

    Magnetoresistance of YBa2Cu3O7 in the "cold spots" model

    Full text link
    We calculate the in-plane magnetoresistance Δρxx/ρxx\Delta\rho_{xx}/\rho_{xx} of YBa2_2Cu3_3O7_7 in a magnetic field applied perpendicular to the CuO2CuO_2 planes for the ``cold spots'' model. In this model, the electron relaxation time τ21/T2\tau_2\propto1/T^2 at small regions on the Fermi surface near the Brillouin zone diagonals is much longer than the relaxation time τ11/T\tau_1\propto1/T at the rest of the Fermi surface (TT is temperature). In qualitative agreement with the experiment, we find that Kohler's rule is strongly violated, but the ratio Δρxx/ρxxtan2θH\Delta\rho_{xx}/\rho_{xx}\tan^2\theta_H, where tanθH\tan\theta_H is the Hall angle, is approximately temperature-independent. We find the ratio is about 5.5, which is of the same order of magnitude as in the experiment.Comment: RevTeX, 4 pages, 6 figures. V.2: 2 references adde

    Mid-infrared Hall effect in thin-film metals: Probing the Fermi surface anisotropy in Au and Cu

    Full text link
    A sensitive mid-infrared (MIR, 900-1100 cm-1, 112-136 meV) photo-elastic polarization modulation technique is used to measure simultaneously Faraday rotation and circular dichroism in thin metal films. These two quantities determine the complex AC Hall conductivity. This novel technique is applied to study Au and Cu thin films at temperatures down to 20 K and magnetic fields up to 8 T. The Hall frequency is consistent with band theory predictions. We report the first measurement of the MIR Hall scattering rate, which is significantly lower than that derived from Drude analysis of zero magnetic field MIR transmission measurements. This difference is qualitatively explained in terms of the anisotropy of the Fermi surface in Au and Cu.Comment: 14 pages of text, 5 figure

    Coexistence and competition of magnetism and superconductivity on the nanometer scale in underdoped BaFe1.89Co0.11As2

    Get PDF
    We report muon spin rotation (muSR) and infrared (IR) spectroscopy experiments on underdoped BaFe1.89Co0.11As2 which show that bulk magnetism and superconductivity (SC) coexist and compete on the nanometer length scale. Our combined data reveal a bulk magnetic order, likely due to an incommensurate spin density wave (SDW), which develops below Tmag \approx 32 K and becomes reduced in magnitude (but not in volume) below Tc = 21.7 K. A slowly fluctuating precursor of the SDW seems to develop alrady below the structural transition at Ts \approx 50 K. The bulk nature of SC is established by the muSR data which show a bulk SC vortex lattice and the IR data which reveal that the majority of low-energy states is gapped and participates in the condensate at T << Tc

    Measurement of the Far Infrared Magneto-Conductivity Tensor of Superconducting YBa2_2Cu3_3O7δ_{7-\delta } Thin Films

    Full text link
    We report measurements of the far infrared transmission of superconducting YBa2_2Cu3_3O7δ_{7-\delta } thin films from 5 cm1^{-1} to 200 cm1^{-1} in fields up to 14TT. A Kramers-Kronig analysis of the magneto-transmission spectrum yields the magneto-conductivity tensor. The result shows that the magneto-conductivity of YBa2_2Cu3_3O7δ_{7-\delta } is dominated by three terms: a London term, a low frequency Lorentzian (ω1\omega _1\approx 3 cm1% ^{-1}) of width Γ1=\Gamma _1= 10 cm1^{-1} and a finite frequency Lorentzian of width Γ2=\Gamma _2= 17 cm1^{-1} at ω2=\omega _2= 24 cm1^{-1} in the hole cyclotron resonance active mode of circular polarization.\\Comment: Revised LaTex file (12 pages) + 4 Postscript figures, uuencoded. In response to referees' comments, we refined the paper a lot; we encourage you to download this revised versio
    corecore