3,780 research outputs found

    Pediatric asthma and autism-genomic perspectives.

    Get PDF
    High-throughput technologies, ranging from microarrays to NexGen sequencing of RNA and genomic DNA, have opened new avenues for exploration of the pathobiology of human disease. Comparisons of the architecture of the genome, identification of mutated or modified sequences, and pre-and post- transcriptional regulation of gene expression as disease specific biomarkers are revolutionizing our understanding of the causes of disease and are guiding the development of new therapies. There is enormous heterogeneity in types of genomic variation that occur in human disease. Some are inherited, while others are the result of new somatic or germline mutations or errors in chromosomal replication. In this review, we provide examples of changes that occur in the human genome in two of the most common chronic pediatric disorders, autism and asthma. The incidence and economic burden of both of these disorders are increasing worldwide. Genomic variations have the potential to serve as biomarkers for personalization of therapy and prediction of outcomes

    Two new species of dacinae (diptera: trypetidae) from New Britain

    Get PDF
    i Two new species, Asiadacus triangularis and Asiadacus nigrescensare described and figured

    New Species, Subgenus and Records of Bactrocera Macquart from the South Pacific (Diptera: Tephritidae: Dacinae)

    Get PDF
    ABSTRACT Bactrocera (Bulladacus) subgen.nov. is described to include nine species of Asian and Pacific Dacinae. B. (Afrodacus) grandistylus sp.nov., B. (Bulladacus) gnetum sp.nov. and B. (Notodacus) paraxanthodes sp.nov. are described and illustrated, the latter being closely related to B. xanthodes (Broun), an economic species with which it has been confused. B. (Bactrocera) passiflorae (Froggatt) and B. (Bulladacus) aenigmatica (Malloch) are revised and a new colour form of the former illustrated, while the male of the latter is described and illustrated for the first time

    Resonance line-profile calculations based on hydrodynamical models of cataclysmic variable winds

    Get PDF
    We present synthetic line profiles as predicted by the models of 2-D line- driven disk winds due to Proga, Stone & Drew. We compare the model line profiles with HST observations of the cataclysmic variable IX Vel. The model wind consists of a slow outflow that is bounded on the polar side by a fast stream. We find that these two components of the wind produce distinct spectral features. The fast stream produces profiles which show features consistent with observations. These include the appearance of the P-Cygni shape for a range of inclinations, the location of the maximum depth of the absorption component at velocities less than the terminal velocity, and the transition from absorption to emission with increasing inclination. However the model profiles have too little absorption or emission equivalent width. This quantitative difference between our models and observations is not a surprise because the line-driven wind models predict a mass loss rate that is lower than the rate required by the observations. We note that the model profiles exhibit a double-humped structure near the line center which is not echoed in observations. We identify this structure with a non-negligible redshifted absorption which is formed in the slow component of the wind where the rotational velocity dominates over expansion velocity. We conclude that the next generation of disk wind models, developed for application to CVs, needs to yield stronger wind driving out to larger disk radii than do the present models.Comment: LaTeX, 19 pages, to appear in Ap

    On the role of the UV and X-ray radiation in driving a disk wind in X-ray binaries

    Get PDF
    X-ray heating of the photosphere of an accretion disk is a possible mechanism to produce strong, broad UV emission lines in low mass X-ray binaries (LMXBs). However, detailed photoionization calculations show that this mechanism fails to produce sufficient emission measure. We present the results of hydrodynamical calculations of the disk photosphere irradiated by strong X-rays. We attempt to determine whether LMXBs can harbor significant UV-driven disk winds despite the effects of X-ray ionization. Such winds would be a likely candidate for the site of emission of UV lines and may better explain the observations than the X-ray heated disk photosphere. We find that the local disk radiation cannot launch a wind from the disk because of strong ionizing radiation from the central object. Unphysically high X-ray opacities would be required to shield the UV emitting disk and allow the line force to drive a disk wind. However the same X-ray radiation that inhibits line driving heats the disk and can produce a hot bipolar wind or corona above the disk. To assess the impact of X-ray heating upon driving of a disk wind by the line force in any system with an accretion disk we derive analytic formulae. In particular, we compare results of line-driven disk wind models for accretion disks in LMXBs and active galactic nuclei. The latter show spectral features associated with a strong and fast disk wind. The key parameter determining the role of the line force is not merely the presence of the luminous UV zone in the disk and the presence of the X-rays, but also the distance of this UV zone from the center.Comment: LaTeX, 34 pages, contains color figures, to appear in Ap

    A Multiscale Model of Partial Melts 1: Effective Equations

    Full text link
    In this paper a model for partial melts is constructed using two-scale homogenization theory. While this technique is well known to the mathematics and materials communities, it is relatively novel to problems in the solid Earth. This approach begins with a grain scale model of the medium, coarsening it into a macroscopic one. The emergent model is in good agreement with previous work, including D. McKenzie's, and serves as verification. This methodology also yields a series of Stokes problems whose solutions provide constitutive relations for permeability and viscosity. A numerical investigation of these relations appears in a companion paper.Comment: 55 pages. Submitted to JGR Solid Eart

    Colossal magnon-phonon coupling in multiferroic Eu0.75_{0.75}Y0.25_{0.25}MnO3_3

    Full text link
    We report the spectra of magnetically induced electric dipole absorption in Eu0.75_{0.75}Y0.25_{0.25}MnO3_3 from temperature dependent far infrared spectroscopy (10-250 cm−1^{-1}). These spectra, which occur only in the e∣∣ae||a polarization, consist of two relatively narrow electromagnon features that onset at TFE=30T_{FE}=30 K and a broad absorption band that persists to temperatures well above TN=47T_N=47 K. The observed excitations account for the step up of the static dielectric constant in the ferroelectric phase. The electromagnon at 80 cm−1^{-1} is observed to be strongly coupled to the nearby lowest optical phonon which transfers more than 1/2 of its spectral weight to the magnon. We attribute the origin of the broad background absorption to the two magnon emission decay process of the phonon.Comment: 4 pages, 3 figure

    Composite vortex model of the electrodynamics of high-TcT_c superconductor

    Full text link
    We propose a phenomenological model of vortex dynamics in which the vortex is taken as a composite object made of two components: the vortex current which is massless and driven by the Lorentz force, and the vortex core which is massive and driven by the Magnus force. By combining the characteristics of the Gittleman-Rosenblum model (Phys. Rev. Lett. {\bf 16}, 734 (1966)) and Hsu's theory of vortex dynamics (Physica {\bf C 213},305 (1993)), the model provides a good description of recent far infrared measurements of the magneto-conductivity tensor of superconducting YBa2_2Cu3_3O7−δ_{7-\delta } films from 5 cm−1^{-1} to 200 cm−1^{-1}.Comment: LaTex file (12 pages) + 3 Postscript figures, uuencoded. More information on this paper, please check http://www.wam.umd.edu/~lihn/newmodel
    • …
    corecore