15 research outputs found

    Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System.

    No full text
    The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins

    LEAD COORDINATION AND ORGANOMETALLIC COMPOUNDS: CLASSIFICATION AND ANALYSIS OF CRYSTALLOGRAPHIC AND STRUCTURAL DATA

    No full text

    Retrotransposons Are the Major Contributors to the Expansion of the Drosophila ananassae Muller F Element

    No full text
    The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (∼5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (>18.7 Mb) in D. ananassae. To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae. Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5′ ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains

    Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy.

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy.

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    corecore