7 research outputs found

    Assessment of temozolomide action encapsulated in chitosan and polymer nanostructures on glioblastoma cell lines

    Get PDF
    Purpose: Glioblastoma multiforme (GBM) remains one of the most devastating diseases known to mankind and affects more than 17,000 patients in the United States alone every year. This malignancy infiltrates the brain early in its course and makes complete neurosurgical resection almost impossible. Recent years have brought significant advances in tumor biology. Many cancers, including gliomas, appear to be supported by cells with stem-like properties. Nanoparticles are excellent candidates to serve as delivery vectors of drugs or biologically active molecules because of their unique chemical and physical properties that result in specific transportation and deposition of such agents in specific organs and tissues.In the current study we have investigated the in vitro action of nanostructural systems (temozolomide encapsulated in chitosan and polymer nanostructures) on high-grade glioma-derived cancer stem cells (CSCs), with the intention of developing a new therapy to treat specific brain tumors with increased efficacy and minimal toxicity. In vitro cytotoxicity and apoptosis measurements indicated that the drug/vector combination facilitated the ability of the alkylating drug TMZ to alter the resistance of these cancer stem cells, suggesting a new chemotherapy strategy even for patients diagnosed with inoperable or recurrent malignant gliomas.Methods: At the National Institute for R & D of Isotopic and Molecular Technologies form Cluj Napoca were synthesized three types of nanostructures chitosan-TMZ, TMZ-chitosan-PEG (poly-ethylene glycol), TMZ-chitosan-PPG (polypropylene glycol). Three type of cell lines (Glioma-derived stem, HFL and HUVEC) were treated with the 3 types of nanostructures and the survival rate of the cells was compare to standard therapy (TMZ).Results: The results showed a reduction in the rate of survival of the tumor cells. Cell proliferation assays clearly demonstrate the differences between conventional chemotherapy (TMZ) and temozolomide encapsulated in chitosan and polymer nanostructures. Conclusion: Nanostructures like chitosan, PEG, PPG are useful as vectors for drugs transport.Despite combined therapy (surgery, radiotherapy, chemotherapy), currently median patient survival is reduced. The key to improving life expectancy could be an effective therapy targeted, customized for each case. An increasingly important role will be new methods of treatment such as immunotherapy, gene therapy or nanotherapy

    Efects of PDT with 5-aminolevulinic acid and chitosan on Walker carcinosarcoma

    No full text
    Porphyrins and new chitosan hydrogels based composites with porphyrins are used as active cytotoxic antitumor agents in photodynamic therapy (PDT). Aim: The present study evaluates the effects of photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) and 5-ALA associated with chitosan (CS) using Walker carcinosarcoma in rats as experimental model. Methods: The animals were irradiated with red light (l = 685 nm, D = 50 J/cm2, 15 min) 3 h after i.p. administration of 5-ALA (250 mg/kg b.w.) or a mixture of 5-ALA (250 mg/kg b.w.) and CS (1.5 mg/kg b.w.). The animals were sacrificed at 1, 3, 6, 24 h and 14 days after the treatment. The effects of PDT were investigated by morphological studies, monitoring the 5-ALA induced protoporphyrin IX (Pp IX) level in tumor tissue and serum, MMP 2 and 9 (gelatinases) activity in tumor and malondialdehyde level (MDA), marker of the lipoperoxidation process, in tumor and serum. Results: Zymography revealed an increased activity of MMP 2 in tumors from animals treated with 5-ALA PDT. PDT with 5-ALA induced a higher lipid peroxidation in tumor tissue compared with 5-ALA-CS. CS associated to 5 ALA PDT enhanced the accumulation of PS in tumors inducing earlier necrotic changes. In the same time CS reduced MMP 2 activity. Conclusion: Our results suggest that MMPs activation and oxygen reactive species are involved in PDT effects.ΠŸΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Ρ‹ ΠΈ Π½ΠΎΠ²Ρ‹Π΅ соСдинСния, основу ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π»ΠΈ Ρ…ΠΈΡ‚ΠΎΠ·Π°Π½Π° с ΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Π°ΠΌΠΈ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ цитотоксичСскиС ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ ΠΏΡ€ΠΈ фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ (PDT). ЦСль: ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ дСйствиС PDT с 5-Π°ΠΌΠΈΠ½ΠΎΠ»Π΅Π²ΡƒΠ»Π΅Π½ΠΎΠ²ΠΎΠΉ кислотой (5-ALA) ΠΈ 5-ALA, ассоциированной с Ρ…ΠΈΡ‚ΠΎΠ·Π°Π½ΠΎΠΌ (CS), Π½Π° ΠΊΠ»Π΅Ρ‚ΠΊΠΈ карциносаркомы Π£ΠΎΠΊΠ΅Ρ€Π°. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: крыс ΠΎΠ±Π»ΡƒΡ‡Π°Π»ΠΈ красным свСтом (Ξ» = 685 Π½ΠΌ, D = 50 Π”ΠΆ/см2 , 15 ΠΌΠΈΠ½) 3 Ρ‡ послС Π²Π½ΡƒΡ‚Ρ€ΠΈΠ±Ρ€ΡŽΡˆΠΈΠ½Π½ΠΎΠ³ΠΎ ввСдСния 5-ALA (250 ΠΌΠ³/ΠΊΠ³) ΠΈΠ»ΠΈ смСси 5-ALA (250 ΠΌΠ³/ΠΊΠ³) ΠΈ CS (1,5 ΠΌΠ³/ΠΊΠ³). ΠŸΠΎΠ΄ΠΎΠΏΡ‹Ρ‚Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π·Π°Π±ΠΈΠ²Π°Π»ΠΈ Ρ‡Π΅Ρ€Π΅Π· 1 Ρ‡, 3 Ρ‡, 6 Ρ‡, 24 Ρ‡ ΠΈ 14 Π΄Π½Π΅ΠΉ послС воздСйствия PDT. Π­Ρ„Ρ„Π΅ΠΊΡ‚ PDT опрСдСляли с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ морфологичСских исслСдований, рСгистрируя ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΏΡ€ΠΎΡ‚ΠΎΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Π° IX (Pp IX), Π²Ρ‹Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ 5-ALA, Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΈ сывороткС ΠΊΡ€ΠΎΠ²ΠΈ, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ MMP 2 ΠΈ 9 (ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½Π°Π·Ρ‹) Π² ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΈ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ диальдСгида (MDA), ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° процСсса пСрСкисного окислСния Π»ΠΈΠΏΠΈΠ΄ΠΎΠ², Π² ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΈ сывороткС ΠΊΡ€ΠΎΠ²ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: зимографичСскиС исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ MMP 2 Π² опухолях ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°Π»ΠΈ 5-ALA PDT. PDT с 5-ALA Π²Ρ‹Π·Ρ‹Π²Π°Π»Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ пСрСкисного окислСния Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с 5-ALA-CS. CS с 5 ALA PDT усиливал Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ Ρ„ΠΎΡ‚ΠΎΡΠ΅Π½ΡΠΈΠ±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ вСщСства (PS) Π² опухолях, вызывая Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Π½Π½ΠΈΠ΅ нСкротичСскиС измСнСния. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя CS сниТал Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ MMP 2. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ для проявлСния эффСктов PDT Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ активация MMP ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода

    Characteristics of Formvar Films Used to Prevent Alpha-Detector Contamination

    No full text
    Alpha spectrometry is an extremely useful and sensitive for detection of alpha-emitting nuclides. Contamination of the silicon detectors for low-level alpha spectrometry by recoil nuclides is a serious problem in the measurement of alpha emitters decaying to daughter nuclides with short half-lives. This unwanted contamination leads to decreased measurement sensitivity causing a degradation of the limit of detection. The simplest method to prevent this radioactive contamination of detector is to use a catcher film between the alpha source and the detector. In this work we describe the obtaining of the thin formvar films as stopper foils for recoil nuclei and we investigated the influence of these films on alpha spectrometry parameters, as energy shift (~30 keV) and resolution (~7%). No significant deterioration of the alpha spectrometry parameters was observed when using thin formvar films. Using the ASTAR web databases, which calculate stopping powers for alpha particles, the thickness of formvar films was estimated to be about 5.355 Γ— 10βˆ’5 g/cm2. The measurements were performed with an ORTEC SOLOIST alpha spectrometer with PIPS detector

    Study of porphyrin cromophores as sensibilisators for photovoltaic solar cell

    No full text
    corecore