9 research outputs found

    Hepatitis C Virus Is Primed by CD81 Protein for Low pH-dependent Fusion

    No full text
    International audienceHepatitis C virus (HCV) entry into permissive cells is a complex process that involves interactions with at least four co-factors followed by endocytosis and low pH-dependent fusion with endosomes. The precise sequence of receptor engagement and their roles in promoting HCV E1E2 glycoprotein-mediated fusion are poorly characterized. Because cell-free HCV tolerates an acidic environment, we hypothesized that binding to one or more receptors on the cell surface renders E1E2 competent to undergo low pH-induced conformational changes and promote fusion with endosomes. To test this hypothesis, we examined the effects of low pH and of the second extracellular loop (ECL2) of CD81, one of the four entry factors, on HCV infectivity. Pretreatment with an acidic buffer or with ECL2 enhanced infection through changing the E1E2 conformation, as evidenced by the altered reactivity of these proteins with conformation-specific antibodies and stable association with liposomes. However, neither of the two treatments alone permitted direct fusion with the cell plasma membrane. Sequential HCV preincubation with ECL2 and acidic buffer in the absence of target cells resulted in a marked loss of infectivity, implying that the receptor-bound HCV is primed for low pH-dependent conformational changes. Indeed, soluble receptor-pretreated HCV fused with the cell plasma membrane at low pH under conditions blocking an endocytic entry pathway. These findings suggest that CD81 primes HCV for low pH-dependent fusion early in the entry process. The simple triggering paradigm and intermediate conformations of E1E2 identified in this study could help guide future vaccine and therapeutic efforts to block HCV infection

    Amphipathic DNA Polymers Inhibit Hepatitis C Virus Infection by Blocking Viral Entry

    No full text
    International audienceBACKGROUND & AIMS: Hepatitis C virus (HCV) gains entry into susceptible cells by interacting with cell surface receptor(s). Viral entry is an attractive target for antiviral development because of the highly conserved mechanism.METHODS: HCV culture systems were used to study the effects of phosphorothioate oligonucleotides (PS-ONs), as amphipathic DNA polymers (APs), on HCV infection. The in vivo effects of APs were tested in urokinase plasminogen activator (uPA)/severe combined immunodeficient (SCID) mice engrafted with human hepatocytes.RESULTS: We show the sequence-independent inhibitory effects of APs on HCV infection. APs were shown to potently inhibit HCV infection at submicromolar concentrations. APs exhibited a size-dependent antiviral activity and were equally active against HCV pseudoparticles of various genotypes. Control phosphodiester oligonucleotide (PO-ON) polymer without the amphipathic structure was inactive. APs had no effect on viral replication in the HCV replicon system or binding of HCV to cells but inhibited viral internalization, indicating that the target of inhibition is at the postbinding, cell entry step. In uPA/SCID mice engrafted with human hepatocytes, APs efficiently blocked de novo HCV infection.CONCLUSIONS: Our results demonstrate that APs are a novel class of antiviral compounds that hold promise as a drug to inhibit HCV entry. Hepatitis C virus (HCV) infects approximately 200 million people worldwide. 1 The majority of HCV-infected patients fails to clear the virus, and many develop chronic liver disease including cirrhosis with a risk of hepatocellular carcinoma. Treatment of chronic hepatitis

    Evidence for Protection against Chronic Hepatitis C Virus Infection in Chimpanzees by Immunization with Replicating Recombinant Vaccinia Virusâ–ż

    No full text
    Given the failures of nonreplicating vaccines against chronic hepatitis C virus (HCV) infection, we hypothesized that a replicating viral vector may provide protective immunity. Four chimpanzees were immunized transdermally twice with recombinant vaccinia viruses (rVV) expressing HCV genes. After challenge with 24 50% chimpanzee infective doses of homologous HCV, the two control animals that had received only the parental VV developed chronic HCV infection. All four immunized animals resolved HCV infection. The difference in the rate of chronicity between the immunized and the control animals was close to statistical significance (P = 0.067). Immunized animals developed vigorous gamma interferon enzyme-linked immunospot responses and moderate proliferative responses. To investigate cross-genotype protection, the immunized recovered chimpanzees were challenged with a pool of six major HCV genotypes. During the acute phase after the multigenotype challenge, all animals had high-titer viremia in which genotype 4 dominated (87%), followed by genotype 5 (13%). However, after fluctuating low-level viremia, the viremia finally turned negative or persisted at very low levels. This study suggests the potential efficacy of replicating recombinant vaccinia virus-based immunization against chronic HCV infection

    An alternate conformation of HCV E2 neutralizing face as an additional vaccine target

    No full text
    International audienceTo achieve global elimination of hepatitis C virus (HCV), an effective cross-genotype vaccine is needed. The HCV envelope glycoprotein E2 is the main target for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. E2 is structurally flexible and functions in engaging host receptors. Many nAbs bind to the “neutralizing face” on E2, including several broadly nAbs encoded by the V H 1-69 germline gene family that bind to a similar conformation (A) of this face. Here, a previously unknown conformation (B) of the neutralizing face is revealed in crystal structures of two of four additional E2–V H 1-69 nAb complexes. In this conformation, the E2 front-layer region is displaced upon antibody binding, exposing residues in the back layer for direct antibody interaction. This E2 B structure may represent another conformational state in the viral entry process that is susceptible to antibody neutralization and thus provide a new target for rational vaccine development

    Structural basis of steroid hormone perception by the receptor kinase BRI1

    No full text
    International audiencePolyhydroxylated steroids are regulators of body shape and size in higher organisms. In metazoans, intracellular receptors recognize these molecules. Plants, however, perceive steroids at membranes, using the membrane-integral receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1). Here we report the structure of the Arabidopsis thaliana BRI1 ligand-binding domain, determined by X-ray diffraction at 2.5 Å resolution. We find a superhelix of 25 twisted leucine-rich repeats (LRRs), an architecture that is strikingly different from the assembly of LRRs in animal Toll-like receptors. A 70-amino-acid island domain between LRRs 21 and 22 folds back into the interior of the superhelix to create a surface pocket for binding the plant hormone brassinolide. Known loss- and gain-of-function mutations map closely to the hormone-binding site. We propose that steroid binding to BRI1 generates a docking platform for a co-receptor that is required for receptor activation. Our findings provide insight into the activation mechanism of this highly expanded family of plant receptors that have essential roles in hormone, developmental and innate immunity signalling
    corecore