53 research outputs found

    Overcoming challenges with statin therapy

    Get PDF

    Effects of eplerenone on resistance to antihypertensive medication in patients with primary or secondary hyperaldosteronism

    Get PDF
    Background and Objectives: Resistant hypertension is an important problem; nearly half of diagnosed hypertensives are not controlled to target blood pressure levels, and approximately 90% of strokes occur among patients with resistant hypertension. Primary aldosteronism accounts for approximately 20% of resistant hypertension, but the role of secondary hyperaldosteronism in resistant hypertension is seldom considered. We assessed the effects of eplerenone in patients with hypertension and either primary or secondary hyperaldosteronism. Methods: Patients with a history of resistant hypertension and a supine plasma aldosterone level ≥ 360 pmol/L were randomized to eplerenone versus placebo in a fully blinded study for one year. A medication intensity score was developed to assess the resistance of hypertension to medication (blood pressure × medication intensity). We assessed the effects of eplerenone on blood pressure and on resistance to concomitant medication. Results: Final results were available in 37 patients (19 on eplerenone and 18 on placebo). Resistance to medication, as assessed by the intensity of concomitant medication required to maintain blood pressure control, was markedly reduced by eplerenone: medication intensity scores declined by −0.50 ± 1.04 (SD) on placebo versus −2.11 ± 1.45 with eplerenone (P = 0.0001), the Systolic Resistance Score declined by −80.00 ± 122.93 on placebo versus −334.05 ± 21.73 on eplerenone (P = 0.0001), and the Diastolic Resistance Score increased by 1.28 ± 31.65 on placebo and declined by −40.74 ± 57.08 on eplerenone (P = 0.009). Conclusions: Eplerenone significantly reduced resistance to concomitant antihypertensive medication in both primary and secondary hyperaldosteronism

    Relationships between Endogenous Plasma Biomarkers of Constitutive Cytochrome P450 3A Activity and Single-Time-Point Oral Midazolam Microdose Phenotype in Healthy Subjects

    Get PDF
    Due to high basal interindividual variation in cytochrome P450 3A (CYP3A) activity and susceptibility to drug interactions, there has been interest in the application of efficient probe drug phenotyping strategies, as well as endogenous biomarkers for assessment of in vivo CYP3A activity. The biomarkers 4β-hydroxycholesterol (4βHC) and 6β-hydroxycortisol (6βHCL) are sensitive to CYP3A induction and inhibition. However, their utility for the assessment of constitutive CYP3A activity remains uncertain. We investigated whether endogenous plasma biomarkers (4βHC and 6βHCL) are associated with basal CYP3A metabolic activity in healthy subjects assessed by a convenient single-time-point oral midazolam (MDZ) phenotyping strategy. Plasma 4βHC and 6βHCL metabolic ratios (MRs) were analysed in 51 healthy adult participants. CYP3A activity was determined after administration of an oral MDZ microdose (100 μg). Simple linear and multiple linear regression analyses were performed to assess relationships between MDZ oral clearance, biomarkers and subject covariates. Among study subjects, basal MDZ oral clearance, 4βHC and 6βHCL MRs ranged 6.5-, 10- and 13-fold, respectively. Participant age and alcohol consumption were negatively associated with MDZ oral clearance (p = 0.03 and p = 0.045, respectively), while weight and female sex were associated with lower plasma 4βHC MR (p = 0.0003 and p = 0.032, respectively). Neither 4βHC nor 6βHCL MRs were associated with MDZ oral clearance. Plasma 4βHC and 6βHCL MRs do not relate to MDZ single-time-point metabolic phenotype in the assessment of constitutive CYP3A activity among healthy individuals

    Apixaban Concentrations with Lower than Recommended Dosing in Older Adults with Atrial Fibrillation

    Get PDF
    OBJECTIVES: Lower than recommended doses of direct-acting oral anticoagulants are often prescribed to older adults with nonvalvular atrial fibrillation (NVAF). Our goal was to determine the consequences of lower than recommended dosing on plasma apixaban concentrations during the clinical care of older adults with NVAF. DESIGN: Convenience sample of patients receiving anticoagulation during 2017. SETTING: Academic medical center. PARTICIPANTS: Stable adults older than 65 years with NVAF receiving apixaban on a chronic basis. MEASUREMENTS: Patient age, weight, creatinine, co-medications, and apixaban concentrations. RESULTS: A total of 110 older adults with NVAF (mean age = 80.4 y; range = 66-100 y with 45% women) were studied. Overall, 48 patients received recommended dosing of 5 mg twice/day, and 42 received lower than recommended dosing. One patient in each category had concentrations below the expected 5% to 95% range at time of peak concentrations. Differences in proportion of apixaban concentrations within or outside expected ranges were not significant between patients receiving lower than recommended doses and those dosed as recommended at 5 mg twice/day (P =.35). However, in patients dosed as recommended with 5 mg twice/day, four had concentrations above the 5% to 95% range for peak levels expected at 3 to 4 hours after dosing; in two, this occurred around the midpoint of the dosing interval. Twenty patients received 2.5 mg twice/day as recommended. One-third had apixaban concentrations higher than expected peak concentrations compared with the clinical trials, and more than two-thirds had levels above the reported median for peak concentrations. CONCLUSIONS: Apixaban concentrations in older adults with NVAF seen clinically were higher than expected based on clinical trial data. The findings raise questions about the optimal dosing of apixaban in older adults with NVAF encountered outside of clinical trials and suggest a role for the monitoring of apixaban concentrations during care of patients that differ from those in randomized trials or when considering dosing outside of published guidelines. J Am Geriatr Soc 67:1902–1906, 2019

    Drug interactions and pharmacogenetic factors contribute to variation in apixaban concentration in atrial fibrillation patients in routine care

    Get PDF
    Factor Xa-inhibitor apixaban is an oral anticoagulant prescribed in atrial fibrillation (AF) for stroke prevention. Its pharmacokinetic profile is known to be affected by cytochrome P450 (CYP)3A metabolism, while it is also a substrate of the efflux transporters ATP-binding cassette (ABC)B1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein, BCRP). In this study, we assessed the impact of interacting medication and pharmacogenetic variation to better explain apixaban concentration differences among 358 Caucasian AF patients. Genotyping (ABCG2, ABCB1, CYP3A4*22, CYP3A5*3) was performed by TaqMan assays, and apixaban quantified by mass spectrometry. The typical patient was on average 77.2 years old, 85.5 kg, and had a serum creatinine of 103.1 µmol/L. Concomitant amiodarone, an antiarrhythmic agent and moderate CYP3A/ABCB1 inhibitor, the impaired-function variant ABCG2 c.421C \u3e A, and sex predicted higher apixaban concentrations when controlling for age, weight and serum creatinine (multivariate regression; R2 = 0.34). Our findings suggest that amiodarone and ABCG2 genotype contribute to interpatient apixaban variability beyond known clinical factors

    Clarifying the importance of CYP2C19 and PON1 in the mechanism of clopidogrel bioactivation and in vivo antiplatelet response

    Get PDF
    AimsIt is thought that clopidogrel bioactivation and antiplatelet response are related to cytochrome P450 2C19 (CYP2C19). However, a recent study challenged this notion by proposing CYP2C19 as wholly irrelevant, while identifying paraoxonase-1 (PON1) and its Q192R polymorphism as the major driver of clopidogrel bioactivation and efficacy. The aim of this study was to systematically elucidate the mechanism and relative contribution of PON1 in comparison to CYP2C19 to clopidogrel bioactivation and antiplatelet response.Methods and resultsFirst, the influence of CYP2C19 and PON1 polymorphisms and plasma paraoxonase activity on clopidogrel active metabolite (H4) levels and antiplatelet response was assessed in a cohort of healthy subjects (n = 21) after administration of a single 75 mg dose of clopidogrel. There was a remarkably good correlation between H4 AUC (0-8 h) and antiplatelet response (r2 = 0.78). Furthermore, CYP2C19 but not PON1 genotype was predictive of H4 levels and antiplatelet response. There was no correlation between plasma paraoxonase activity and H4 levels. Secondly, metabolic profiling of clopidogrel in vitro confirmed the role of CYP2C19 in bioactivating clopidogrel to H4. However, heterologous expression of PON1 in cell-based systems revealed that PON1 cannot generate H4, but mediates the formation of another thiol metabolite, termed Endo. Importantly, Endo plasma levels in humans are nearly 20-fold lower than H4 and was not associated with any antiplatelet response.ConclusionOur results demonstrate that PON1 does not mediate clopidogrel active metabolite formation or antiplatelet action, while CYP2C19 activity and genotype remains a predictor of clopidogrel pharmacokinetics and antiplatelet response. © 2012 The Author

    Clinical and pharmacogenetic predictors of circulating atorvastatin and rosuvastatin concentrations in routine clinical care

    Get PDF
    Background-A barrier to statin therapy is myopathy associated with elevated systemic drug exposure. Our objective was to examine the association between clinical and pharmacogenetic variables and statin concentrations in patients. Methods and Results-In total, 299 patients taking atorvastatin or rosuvastatin were prospectively recruited at an outpatient referral center. The contribution of clinical variables and transporter gene polymorphisms to statin concentration was assessed using multiple linear regression. We observed 45-fold variation in statin concentration among patients taking the same dose. After adjustment for sex, age, body mass index, ethnicity, dose, and time from last dose, SLCO1B1 c.521T\u3eC (P\u3c0.001) and ABCG2 c.421C\u3eA (P\u3c0.01) were important to rosuvastatin concentration (adjusted R2=0.56 for the final model). Atorvastatin concentration was associated with SLCO1B1 c.388A\u3eG (P\u3c0.01) and c.521T\u3eC (P\u3c0.05) and 4β-hydroxycholesterol, a CYP3A activity marker (adjusted R2=0.47). A second cohort of 579 patients from primary and specialty care databases were retrospectively genotyped. In this cohort, genotypes associated with statin concentration were not differently distributed among dosing groups, implying providers had not yet optimized each patient\u27s risk-benefit ratio. Nearly 50% of patients in routine practice taking the highest doses were predicted to have statin concentrations greater than the 90th percentile. Conclusions-Interindividual variability in statin exposure in patients is associated with uptake and efflux transporter polymorphisms. An algorithm incorporating genomic and clinical variables to avoid high atorvastatin and rosuvastatin levels is described; further study will determine whether this approach reduces incidence of statin myopathy. © 2013 American Heart Association, Inc

    Hockey Concussion Education Project, Part 1. Susceptibility-weighted imaging study in male and female ice hockey players over a single season: Clinical article

    Get PDF
    Object. Concussion, or mild traumatic brain injury (mTBI), is a commonly occurring sports-related injury, especially in contact sports such as hockey. Cerebral microbleeds (CMBs), which appear as small, hypointense lesions on T2*-weighted images, can result from TBI. The authors use susceptibility-weighted imaging (SWI) to automatically detect small hypointensities that may be subtle signs of chronic and acute damage due to both subconcussive and concussive injury. The goal was to investigate how the burden of these hypointensities changes over time, over a playing season, and postconcussion, in comparison with subjects who did not suffer a medically observed and diagnosed concussion. Methods. Images were obtained in 45 university-level adult male and female ice hockey players before and after a single Canadian Interuniversity Sports season. In addition, 11 subjects (5 men and 6 women) underwent imaging at 72 hours, 2 weeks, and 2 months after concussion. To identify subtle changes in brain tissue and potential CMBs, nonvessel clusters of hypointensities on SWI were automatically identified, and a hypointensity burden index was calculated for all subjects at the beginning of the season (BOS), the end of the season (EOS), and at postconcussion time points (where applicable). Results. A statistically significant increase in the hypointensity burden, relative to the BOS, was observed for male subjects with concussions at the 2-week postconcussion time point. A smaller, nonsignificant rise in the burden for female subjects with concussions was also observed within the same time period. There were no significant changes in burden for nonconcussed subjects of either sex between the BOS and EOS time points. However, there was a statistically significant difference in the burden between male and female subjects in the nonconcussed group at both the BOS and EOS time points, with males having a higher burden. Conclusions. This method extends the utility of SWI from the enhancement and detection of larger (\u3e 5 mm) CMBs, which are often observed in more severe cases of TBI, to cases involving smaller lesions in which visual detection of injury is difficult. The hypointensity burden metric proposed here shows statistically significant changes over time in the male subjects. A smaller, nonsignificant increase in the burden metric was observed in the female subjects. ©AANS, 2014

    Clinical and genetic determinants of warfarin pharmacokinetics and pharmacodynamics during treatment initiation

    Get PDF
    Variable warfarin response during treatment initiation poses a significant challenge to providing optimal anticoagulation therapy. We investigated the determinants of initial warfarin response in a cohort of 167 patients. During the first nine days of treatment with pharmacogenetics-guided dosing, S-warfarin plasma levels and international normalized ratio were obtained to serve as inputs to a pharmacokinetic-pharmacodynamic (PK-PD) model. Individual PK (S-warfarin clearance) and PD (I max) parameter values were estimated. Regression analysis demonstrated that CYP2C9 genotype, kidney function, and gender were independent determinants of S-warfarin clearance. The values for I max were dependent on VKORC1 and CYP4F2 genotypes, vitamin K status (as measured by plasma concentrations of proteins induced by vitamin K absence, PIVKA-II) and weight. Importantly, indication for warfarin was a major independent determinant of I max during initiation, where PD sensitivity was greater in atrial fibrillation than venous thromboembolism. To demonstrate the utility of the global PK-PD model, we compared the predicted initial anticoagulation responses with previously established warfarin dosing algorithms. These insights and modeling approaches have application to personalized warfarin therapy. © 2011 Gong et al

    Fexofenadine and rosuvastatin pharmacokinetics in mice with targeted disruption of organic anion transporting polypeptide 2b1

    Get PDF
    Organic anion transporting polypeptide 2B1 (OATP2B1) is a widely expressed membrane transporter with diverse substrate specificity. In vitro and clinical studies suggest a role for intestinal OATP2B1 in the oral absorption of medications. Moreover, OATP2B1 is highly expressed in hepatocytes where it is thought to promote liver drug clearance. However, until now, a shortcoming of studies implicating OATP2B1 in drug disposition has been a lack of in vivomodels.Here,we report the development of a knockout (KO) mousemodel with targeted, global disruption of the Slco2b1 gene to examine the disposition of two confirmed mOATP2B1 substrates, namely, fexofenadine and rosuvastatin. The plasma pharmacokinetics of intravenously administered fexofenadine was not different between KO and wildtype (WT) mice. However, after oral fexofenadine administration, KO mice had 70% and 41% lower maximal plasma concentration (Cmax) and area under the plasmaconcentration-timecurve (AUC0-last) than WT mice, respectively. In WT mice, coadministration of fexofenadine with grapefruit juice (GFJ) or apple juice (AJ) was associated with reduced Cmax by 80% and 88%, respectively, while the AUC0-last values were lower by 35% and 70%, respectively. In KO mice, AJ coadministration reduced oral fexofenadine Cmax and AUC0-last values by 67% and 59%, respectively, while GFJ had no effects. Intravenous and oral rosuvastatin pharmacokinetics were similar among WT and KO mice. We conclude that intestinal OATP2B1 is a determinant of oral fexofenadine absorption, as well as a target for fruit juice interactions. OATP2B1 does not significantly influence rosuvastatin disposition in mice
    • …
    corecore