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Abstract: Due to high basal interindividual variation in cytochrome P450 3A (CYP3A) activity and susceptibility to drug interac-
tions, there has been interest in the application of efficient probe drug phenotyping strategies, as well as endogenous biomarkers
for assessment of in vivo CYP3A activity. The biomarkers 4b-hydroxycholesterol (4bHC) and 6b-hydroxycortisol (6bHCL) are
sensitive to CYP3A induction and inhibition. However, their utility for the assessment of constitutive CYP3A activity remains
uncertain. We investigated whether endogenous plasma biomarkers (4bHC and 6bHCL) are associated with basal CYP3A meta-
bolic activity in healthy subjects assessed by a convenient single-time-point oral midazolam (MDZ) phenotyping strategy. Plasma
4bHC and 6bHCL metabolic ratios (MRs) were analysed in 51 healthy adult participants. CYP3A activity was determined after
administration of an oral MDZ microdose (100 lg). Simple linear and multiple linear regression analyses were performed to
assess relationships between MDZ oral clearance, biomarkers and subject covariates. Among study subjects, basal MDZ oral
clearance, 4bHC and 6bHCL MRs ranged 6.5-, 10- and 13-fold, respectively. Participant age and alcohol consumption were neg-
atively associated with MDZ oral clearance (p = 0.03 and p = 0.045, respectively), while weight and female sex were associated
with lower plasma 4bHC MR (p = 0.0003 and p = 0.032, respectively). Neither 4bHC nor 6bHCL MRs were associated with
MDZ oral clearance. Plasma 4bHC and 6bHCL MRs do not relate to MDZ single-time-point metabolic phenotype in the
assessment of constitutive CYP3A activity among healthy individuals.

It is well recognized that cytochromes P450 3A4 (CYP3A4)
and CYP3A5 are important human drug-metabolizing
enzymes with high interindividual variability in hepatic and
intestinal activities. This is due to environmental, genetic,
developmental, disease and seasonal control, including signif-
icant susceptibility to drug interactions [1–6]. Indeed, active
CYP3A5 is genetically determined [7] while reduced CYP3A
activity is associated with CYP3A4*22 [8], and peroxisome
proliferator-activating receptor alpha (PPARa rs4253728) [9]
while increased CYP3A activity is linked with CYP oxidore-
ductase POR*28 [10] polymorphism. Importantly, drug inter-
actions such as those caused by enzyme inhibition with
itraconazole and enzyme induction after rifampin treatment
can result in a dramatic 400-fold range in CYP3A activity in
human beings [11]. Furthermore, conditions including cirrho-
sis [12], chronic hepatitis C infection [13], critical illness
[14], cancer [15,16] and kidney disease [17–19] are associ-
ated with reduced CYP3A activity. Given such wide differ-
ences in enzyme activity among individuals, there has long
been interest in various methods to quantify in vivo CYP3A
function.

The most widely used and accepted method to assess
CYP3A activity is to examine midazolam (MDZ) pharmacoki-
netics [20,21]. CYP3A phenotyping with MDZ has several
advantages including rapid and specific elimination of CYP3A
enzymes, sensitivity to a wide range of enzyme activity and
ability to be administered orally or intravenously in the assess-
ment of metabolism by first-pass organs. Conventional MDZ
metabolic phenotyping strategy involves administration of 1–
4 mg oral doses with sequential blood sampling over 24 hr.
Variations of this approach to improve safety and practicality
are the use of microdoses [22] and single-time-point [23] or
limited sampling strategies [24].
Urinary 6b-hydroxycortisol (6bHCL) to cortisol metabolic

ratio (MR) has had most widespread use as a non-invasive mea-
sure of CYP3A activity. Urinary 6bHCL MR is sensitive to both
CYP3A induction and inhibition by drugs [25–28]. However,
urinary 6bHCL MR is not solely dependent on CYP3A activity
but also urinary elimination of cortisol and 6bHCL. Therefore, a
minimally invasive index termed cortisol 6b-hydroxylation
clearance has been proposed which requires analysis of both
6bHCL in urine and cortisol in plasma [26,29,30]. To our inter-
est, the plasma 6bHCL to plasma cortisol MR has not previ-
ously been described as an alternative CYP3A activity metric.
Plasma 4b-hydroxycholesterol (4bHC) is an observed

endogenous metabolite of CYP3A4-mediated cholesterol
metabolism [31]. Induction and inhibition of CYP3A by
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administration of anticonvulsants/rifampin and itraconazole
increases [31,32] and decreases [33] plasma 4bHC concentra-
tions, respectively. The MR of plasma 4bHC to total plasma
cholesterol concentrations serves commonly as a measure of
in vivo CYP3A activity [33,34].
The validity of urinary 6bHCL and plasma 4bHC MRs as

CYP3A activity biomarkers in comparison with conventional
MDZ phenotyping has been examined in several studies
[27,28,34–38]. On balance, these reports have demonstrated
that changes in urinary 6bHCL MR/6b-hydroxylation clear-
ance and plasma 4bHC MR are correlated with alterations in
MDZ pharmacokinetics. These findings indicate that urinary
6bHCL and plasma 4bHC have some utility in assessing alter-
ations in CYP3A activity resulting from drug interactions.
However, it is less clear whether these biomarkers are sensi-
tive and capable of measuring constitutive CYP3A activity,
which is known to have significant interindividual variability
when determined as MDZ phenotype [23,34,36].
In this study, we compared convenient methods for assess-

ing basal CYP3A activity in healthy subjects using plasma
4bHC and 6bHCL MRs and single-time-point MDZ micro-
dose phenotyping.

Materials and Methods

Clinical protocol. All procedures performed in studies involving
human participants were in accordance with the ethical standards of
the institutional and/or national research committee and with the 1964
Helsinki Declaration and its later amendments or comparable ethical
standards. This study was approved by the Human Subjects Research
Ethics Board at Western University (Approval Number 18139).
Informed consent was obtained from all individual participants
included in the study. The study was conducted at the Centre for
Clinical Investigation and Therapeutics, London Health Sciences
Centre, London, ON, Canada. Subjects were deemed healthy for study
inclusion according to physical examination, medical history and
laboratory analysis. Beginning 1 week prior to study day, participants
were asked to refrain from taking grapefruit or herbal products.
Twenty-four hours prior to the commencement of the study,
participants were also asked to refrain from caffeine, medication and
alcohol consumption. After overnight fast prior to study day, baseline
blood was obtained (~08:00) for analysis of plasma 6bHCL, 4bHC,
cortisol and total cholesterol. Subjects were then administered 100 lg
MDZ (Sandoz, Boucherville, QC, Canada) orally in water, and 3 hr
thereafter, blood was obtained for measurement of plasma MDZ.

Genotyping. Single nucleotide polymorphisms (SNPs) associated with
altered CYP3A activity were genotyped by TaqMan allelic
discrimination assay (Applied Biosystems, Foster City, CA, USA) for
CYP3A4*22 (rs35599367) and CYP3A5*3 (rs776746), PPARa
(rs4253728), and POR*28 (rs1057868).

MDZ Quantification. Plasma samples were analysed for MDZ by
liquid chromatography–tandem mass spectrometry (LC-MS/MS). MDZ
and alprazolam standards were obtained from ThermoFisher
Diagnostix (Waltham, MA, USA) and Toronto Research Chemicals
(Toronto, ON, Canada), respectively. Plasma (500 ll) was spiked with
internal standard (10 ll, 5 ng/ml alprazolam) and extracted with
isopropyl ether. The organic layer was dried under nitrogen gas at
50°C and reconstituted in mobile phase. Analytes were separated by
reverse-phase chromatography (Hypersil Gold, 50 9 5 mm, 5 lm;

ThermoFisher, ThermoFisher Scientific, San Jose, CA, USA) using
gradient elution with 0.1% formic acid in water and acetonitrile
(Agilent 1200; Agilent, Santa Clara, CA, USA). The mass
spectrometer (Thermo TSQ Vantage, ThermoFisher Scientific, San
Jose, CA, USA) with heated electrospray ionization source was set in
positive mode for the detection of MDZ and alprazolam with mass
transitions 326.1 ? 291.2 m/z and 309.0 ? 280.9 m/z, respectively.
The lower limit of quantification (LLOQ) for MDZ in plasma was
0.01 ng/ml. Assay bias and precision (CV %) were 11.8% and 6.8%,
respectively.

6bHCL Quantification. Plasma samples were measured for 6bHCL
using LC-MS/MS. 6bHCL and 6bHCL-D4 standards were purchased
from Toronto Research Chemicals. Plasma (400 ll) was spiked with
internal standard (8 ll, 8 ng/ml 6bHCL-D4), diluted with water and
extracted using Oasis HLB plates (Waters, Milford, MA, USA).
Analytes were separated and quantified using similar instrumentation
and chromatography as above. 6bHCL and 6bHCL-D4 were detected in
negative mode as formate adducts with mass transitions
423.1 ? 313.3 m/z and 427.2 ? 351.3 m/z, respectively. Calibration
curves and quality control samples were prepared in Krebs–Henseleit
bicarbonate buffer. The LLOQ for 6bHCL in plasma was 0.0625 ng/ml.
Interday assay precision, as determined on 3 separate days, was 7.4%.

4bHC Quantification. Plasma concentrations of 4bHC were determined
by picolinic acid derivatization and ultra-high-pressure liquid
chromatography–tandem mass spectrometry (UHPLC-MS/MS, Agilent
1290 coupled with Thermo TSQ Quantum Ultra) as described by
Honda et al., with modifications [39]. Plasma samples (50 ll) were
spiked with internal standard (4bHC-D7; Avanti Polar Lipids, Alabaster,
AL, USA) followed by saponification in 0.5 ml 1 M ethanolic KOH at
37°C for 1 hr. After the addition of 0.15 ml of water, sterols were
extracted twice with 1 ml of hexane and the collected organic layers
were allowed to evaporate to dryness at 80°C. Subsequently, 170 ll of a
reagent mixture composed of 2-methyl-6-nitrobenzoic anhydride
(100 mg), 4-dimethylaminopyridine (30 mg), picolinic acid (80 mg),
pyridine (1.5 ll) and triethylamine (0.2 ll) was added to each dried
extract and incubated at 80°C for 1 hr to derivatize the sterols. The
resulting mixture was extracted with hexane (1.5 ml) and the organic
layer allowed to evaporate to dryness. The residue was reconstituted in
mobile phase, and 20 ll was injected into the UHPLC-MS/MS.
Standard curve samples containing 4bHC were prepared in Krebs–
Henseleit bicarbonate buffer rather than plasma. Quality control samples
contained 4bHC 5 ng/ml in Krebs–Henseleit bicarbonate buffer without
added 4aHC. Analytes were separated on an Agilent Zorbax Eclipse
Plus C18 column (100 9 2.1 mm, 1.8 lm) and gradient elution with
mobile phases of 0.1% formic acid in water and 1:1 v/v acetonitrile:
methanol. Under these conditions, retention times for 4aHC, 4bHC and
4bHC-D7 were 7.80, 8.10 and 8.00 min, respectively. Baseline
separation was achieved between 4aHC and 4bHC. Analytes were
detected in positive mode with mass transitions 635.4 ? 146.5 m/z and
642.4 ? 146.5 m/z for 4bHC and 4bHC-D7, respectively. The LLOQ
for 4bHC in plasma was 2.5 ng/ml. Interday assay precision, as
determined on 8 separate days, was 16%.

Cholesterol and cortisol quantification. Total cholesterol in plasma
was measured by an enzymatic colorimetric method (Cholesterol E
kit; Wako, Richmond, VA, USA), while total plasma cortisol levels
were measured by ELISA (Cat. No. EA65; Oxford Biomedical
Research, Burlington, ON, Canada).

Estimation of MDZ oral clearance. It has been previously reported
that a single-time-point plasma sampling approach between 3 and 4 hr
post-MDZ dose can be used to phenotype constitutive CYP3A activity
[23]. We used plasma MDZ concentration versus time data from our
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previous study of a healthy volunteer cohort administered oral MDZ
microdose (100 lg) [40]. Linear regression analysis of total MDZ area
under the plasma concentration–time curve (AUC) with the plasma
concentration 3 hr post-dose was performed (Figure S1). This exercise
yielded the following equation for MDZ exposure: MDZ AUC (ng/
ml 9 min) = 8.591 [MDZ]t = 3 hr + 0.112 (r2 = 0.86, p < 0.0001),
which was used to estimate MDZ AUC in the present study. MDZ
oral clearance (CL/F) was calculated as dose divided by estimated
MDZ AUC.

Statistical analysis. Univariate associations between participant
demographics, CYP3A biomarkers and MDZ oral clearance were
performed to obtain Pearson’s correlation coefficients (q). We used
the log-transformed values for CYP3A biomarkers, MDZ oral
clearance and age to better describe the linear relationship between
variables. Multiple linear regression was used to determine the
contributions of demographic variables to biomarker MRs and MDZ
oral clearance. Analyses were performed using R software (The R

Project for Statistical Computing, www.r-project.org) and GRAPHPAD

PRISM 5 software (GraphPad, La Jolla, CA, USA).

Results

Study cohort.
Fifty-one healthy participants (average age 28, 61% female)
completed the study (table 1). The majority of subjects were
Caucasian (57%). Average number of standard alcoholic bev-
erages consumed per week was self-reported by study partici-
pants during health assessments. Forty-six of the 51 subjects
consented for genetic analysis. Genotype frequencies for
CYP3A4*22, CYP3A5*3, PPARa (rs4253728) and POR*28
were within expected frequencies. No subjects were taking
medications known to inhibit or induce CYP3A activity.

Determinants of MDZ oral clearance and biomarker
variation.
Modest, non-Gaussian interindividual variability was observed
for each measure of CYP3A activity. Estimated MDZ oral
clearance ranged 6.5-fold (45–292 l/hr, mean 112 l/hr;
fig. 1A). Among subjects, plasma 4bHC MR ranged 10-fold
(5.6–56.8 ng/mg, mean 17.7 ng/mg; fig. 1B), while plasma
6bHCL MR had 13-fold range (0.0021–0.0283, mean 0.081;
fig. 1C). We explored whether each CYP3A activity measure
was associated with participant demographics (age, sex,
weight, BMI and ethnicity), alcohol consumption, medication
use and relevant genotypes. With univariate analysis, increased
weekly alcohol consumption was associated with decreased
MDZ oral clearance (q = �0.366, p = 0.008; fig. 1A).
Plasma 4bHC MR was associated with age and weight (q =
�0.307, p = 0.029; q = �0.468, p = 0.0005, respectively;
fig. 1B). No subject variables were correlated with plasma
6bHCL MR (fig. 1C). We did not find any association
between CYP3A4*22, CYP3A5*3, PPARa (rs4253728) and
POR*28 alleles and endogenous biomarker MRs or MDZ oral
clearance (table 2). Other considered variables did not associ-
ate with MDZ oral clearance, plasma 4bHC MR or plasma
6bHCL MR in univariate analyses.
Multiple linear regression analysis was performed with

demographic covariates (age, sex, weight and alcohol

consumption) to better understand the determinants of biomar-
ker MRs and MDZ oral clearance. In the analysis of MDZ
oral clearance, increasing age (p = 0.030) and alcohol con-
sumption (p = 0.045) were associated with reducing MDZ
oral clearance when sex and weight were adjusted in the
model; 23.4% of the total variation in log MDZ oral clearance
was explained by the four variables. For 4bHC MR, female
sex (p = 0.032) and increased weight (p = 0.0003) were asso-
ciated with reduced 4bHC MR when adjusted by age and
alcohol (multiple R2 = 0.355; table 3). There remained a lack
of association between demographic variables and plasma
6bHCL MR after multiple linear regression modelling
(table 3).

Correlation between MDZ oral clearance and biomarkers.
We found no significant relationships between MDZ oral
clearance and plasma biomarker MRs (fig. 2A,B). Moreover,
when 4bHC MR or plasma 6bHCL MR values were added to
multiple linear regression models that included participant
demographic variables, neither biomarker meaningfully
increased the explained variation in MDZ oral clearance
(Table S1). There was no relationship between plasma 4bHC
MR and plasma 6bHCL MR (fig. 2C).

Discussion

In this study, we compared plasma biomarkers to MDZ meta-
bolic phenotype, the probe test that is considered the gold
standard for assessment of CYP3A activity. For this purpose,
we used an orally administered MDZ microdose with plasma

Table 1.
Study participant demographics.

Age (range) 28.2 (19–58)
Sex
Male (%) 20 (39)
Female (%) 31 (61)

Weight (kg) (range) 71.1 (49.1–114.5)
BMI (kg/m2) (range) 24.6 (19–36.5)
Ethnicity (% total)
Caucasian 29 (57)
Asian/Pacific Rim 8 (16)
Middle Eastern 8 (16)
African 4 (8)
South Asian 1 (2)
Hispanic 1 (2)

Drinks/week (range) 3.1 (0–15)
Medication use (% total)
Oral Contraceptives 14 (27.5)
Vitamin D 3 (6)
Iron Supplements 3 (6)
Multivitamins 3 (6)
Acetylsalicylic acid 1 (2)

Genotype1 (Allelic Frequency, %)

CYP3A4*22 5
CYP3A5*3 84
PPARa (rs4253728) 15
POR*28 26

1Genotype available for 46 of 51 participants.
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exposure estimated using a single-time-point sampling strat-
egy. The validity of this efficient approach is supported by the
pharmacokinetic linearity of MDZ over a wide range of doses
and the suitability of single-point sampling between 3 and
4 hr post-dose to predict MDZ AUC [23,41–43]. The lack of
sedative effect also provides additional convenience and safety

when compared to higher MDZ doses used in metabolic
phenotyping. However, these advantages are counterbalanced
by increased bias and reduced precision introduced by sparse
sampling [24]. Our choice of oral versus intravenous MDZ
phenotype should be considered in the interpretation of bio-
marker correlations. MDZ exposure after oral administration is

A

B

C

i ii iii iv

i ii iii iv

i ii iii iv

p = p = p =
p =

p =p =p =p =

p = p = p = p =

Fig. 1. Cohort distribution of CYP3A phenotype markers and association with demographic characteristics. Frequency distribution of (A) MDZ oral
clearance, (B) 4bHC:cholesterol metabolic ratio and (C) 6bHCL:cortisol metabolic ratio in the study cohort (n = 51). (i–iv) Associations of log
MDZ oral clearance, log 4bHC:cholesterol metabolic ratio and log 6bHCL:cortisol metabolic ratio with participant demographics including log age,
weight, alcohol consumption and sex. (iv) Plots show median values (line), 25th to 75th percentile (box) and range (whiskers). CYP3A: cyto-
chrome P450 3A; 4bHC, 4b-hydroxycholesterol; 6bHCL, 6b-hydroxycortisol; MDZ, midazolam; q: Pearson’s correlation coefficient; p: p-value.

Table 2.
Relationships of gene variant carriers/non-carriers with corresponding MDZ oral CL or endogenous biomarkers.

CYP3A4*22 CYP3A52 PPARa rs4253728 POR*28

Carrier status1 C NC Non-expresser Expresser C NC C NC

n 5 41 32 14 14 32 22 24
MDZ Oral
Clearance
(l/hr)
(�S.E.M.)

100 (�11) 116 (�8) 115 (�9) 110 (�12) 124 (�11) 110 (�9) 119 (�9) 110 (�11)

4bHC MR
(ng/mg)
(�S.E.M.)

11 (�2) 18 (�2) 16 (�1) 20 (�4) 16 (�2) 18 (�2) 18 (�2) 17 (�2)

6bHCL MR
(�S.E.M.)

0.008
(�0.002)

0.008
(�0.0007)

0.008
(�0.0007)

0.008
(�0.002)

0.008
(�0.001)

0.008
(�0.001)

0.009
(�0.001)

0.006
(�0.0006)

1C, carriers (heterozygous + homozygous); NC, non-carriers.
2Non-expresser: CYP3A5*3/*3; expresser: CYP3A5*3 heterozygous (n = 13) + CYP3A5*3 non-carriers (n = 1).
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determined by both intestinal and hepatic CYP3A activity. It
is generally considered that plasma 4bHC and 6bHCL levels
result from metabolism in the liver. Significant endogenous
6bHCL formation may occur in the intestine because grape-
fruit juice, a well-known intestinal but not hepatic CYP3A
inactivator, causes reduced urinary 6bHCL excretion [44]. At
present, there is uncertainty regarding the contribution of
intestinal CYP3A to plasma 4bHC concentrations. Neverthe-
less, oral MDZ phenotype was assessed in this study because
we were motivated by the possibility that biomarkers could
predict the pharmacokinetics of other orally administered,
CYP3A substrate drugs.
For this study, we used plasma 6bHCL MR as an alterna-

tive to the traditional urinary biomarker analysis or 6b-hydrox-
ylation clearance which requires both plasma and urine
measurements. We anticipated that plasma 6bHCL MR would
be less affected by factors influencing the excretion of 6bHCL
or cortisol and potential intrarenal cortisol metabolism, which
may alter assessment of cortisol 6b-hydroxylation activity.
Given the known diurnal variation in plasma cortisol, plasma
6bHCL MR was assessed for all subjects in the morning

(08:00). Imamura and colleagues recently reported a parallel
diurnal variation in plasma 6bHCL levels [45], a finding that
supports the validity of a simplified plasma 6bHCL MR anal-
ysis. Additional studies incorporating CYP3A induction and
inhibition are required to fully assess the utility of plasma
6bHCL MR phenotyping approach.
The main findings of the present study are that plasma

4bHC and 6bHCL MRs are not associated with single-time-
point MDZ phenotype in healthy subjects at baseline. The cur-
rent results with a cohort of moderate size (n = 51) confirm
other studies reporting low correlations between plasma 4bHC
MR and MDZ clearance after oral or intravenous administra-
tion in healthy subjects [34,38]. Moreover, the findings with
plasma 6bHCL MR are consistent with the results of other
reports that compared basal urinary 6bHCL MR with intra-
venous and MDZ oral clearance [36,46,47].
The lack of association between plasma biomarkers and

MDZ oral clearance indicates potential differential contribution
of factors regulating each biomarker level and MDZ pharma-
cokinetics. Indeed, we found that age, weight and alcohol
consumption associate differently with the observed biomarker
and MDZ exposures after univariate analyses (fig. 1). More-
over, results from multiple linear regression modelling indicate
that age and alcohol were associated with MDZ oral clearance,
while sex and weight related to 4bHC MR (table 3). Our
findings are consistent with another report of reduced MDZ
clearance in elderly compared to young men [48] while con-
trasting with another study that found no age-related effects
[49]. The finding that alcohol intake has a negative association
with MDZ oral clearance was surprising given that the amounts
consumed were not expected to affect MDZ metabolism. In
another study, decreased oral MDZ bioavailability together with
a lack of alterations in systemic clearance was found in subjects
who were moderate drinkers (14–21 drinks/week) [50]. The
fact that plasma 4bHC MR is negatively correlated with weight
(fig. 1C) is consistent with results from other studies [51,52].
Interestingly, there were no demographic variables that pre-
dicted 6bHCL MR albeit a previous report which showed that
urinary 6bHCL MR decreases after the age of 50 [53].

Table 3.
Multiple linear regression analysis of association of cytochrome P450
3A activity markers with subject demographics.

Model Variable Coefficient p-Value

Log (MDZ Oral Clearance)
(R2 = 0.234)

Log (age) �0.476 0.030*
Sex 0.198 0.179
Alcohol �0.034 0.045*
Weight 0.003 0.424

Log (4bHC MR)
(R2 = 0.355)

Log (age) �0.395 0.111
Sex �0.369 0.032*
Alcohol �0.030 0.127
Weight �0.019 0.0003*

Log (6bHCL MR)
(R2 = 0.076)

Log (age) �0.538 0.081
Sex �0.053 0.798
Alcohol 0.006 0.787
Weight 0.0008 0.900

*p < 0.05.
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Fig. 2. CYP3A phenotype marker associations. Associations of (A) log 4bHC:cholesterol metabolic ratio and (B) log 6bHCL:cortisol metabolic
ratio with log MDZ oral clearance. (C) Relationship between log 4bHC:cholesterol metabolic ratio and log 6bHCL:cortisol metabolic ratio.
CYP3A: cytochrome P450 3A; 4bHC, 4b-hydroxycholesterol; 6bHCL, 6b-hydroxycortisol; MDZ, midazolam; q: Pearson’s correlation coefficient;
p: p-value.
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In multivariable regression, but not in univariate analysis,
we found that sex is a significant predictor of 4bHC MR,
but unexpectedly females had lower values than males. This
result differs from that of another study demonstrating higher
plasma 4bHC levels in females [54]. Similarly, in multivari-
able regression analyses, we did not observe any association
between sex and MDZ oral clearance or 6bHCL MR despite
previous studies showing slightly increased MDZ clearance
[55–57] and urinary 6bHCL MR [53] in women compared
to men. While our ability to observe a sex difference in
MDZ oral clearance may be attributed to the single-time-
point microdose strategy, it is likely that our small sample
size was a limiting factor. Indeed, it has been suggested that
a sample size of 300 subjects would be necessary to ade-
quately detect the subtle sex differences in oral MDZ phar-
macokinetics [55]. It is interesting that with univariate
analysis, we see a trend towards increased MDZ oral clear-
ance in females (p = 0.054; fig. 1), indicating higher CYP3A
activity.
With respect to genetic contributors to CYP3A phenotypes,

we did not find any influence of CYP3A4*22, CYP3A5*3,
PPARa (rs4253728) and POR*28 alleles on endogenous
biomarker MRs or MDZ oral clearance (table 2). It must be
considered that the low numbers of subjects carrying less com-
mon variants (e.g. CYP3A4*22) and few with homozygous
alleles (CYP3A5*1/*1) reduced the power to detect a genetic
contribution for CYP3A activity measures. Indeed, the results
differ from the observed impact of CYP3A4*22 [58] and
POR*28 [59] on MDZ pharmacokinetics and CYP3A5 expres-
ser status with plasma 4bHC MR [51,54]. However, the
results are consistent with studies that, on balance, demon-
strate a lack of effect of CYP3A5 expression with MDZ phar-
macokinetics [60] and the absence of association of PPARa
(rs4253728) and CYP3A5*1 genotypes with urinary 6bHCL
MR [61]. Two previous studies have shown that CYP3A5
polymorphisms were not a relevant modulator of MDZ
pharmacokinetics when studied at both microdoses and normal
doses [43,62], and these findings are consistent with those that
show a lack of CYP3A5 genotype effects on MDZ pharma-
cokinetics at regular doses [60,62–65]. Therefore, we propose
that our finding of a lack of association between CYP3A5
genotype and MDZ oral clearance was not confounded by the
low dose of drug administered. With respect to CYP3A4*22,
its effects on MDZ pharmacokinetics have been described
when the drug was administered at milligram doses [58,66]. It
remains possible that the current MDZ microdose strategy
may have affected the ability to detect an influence of
CYP3A4*22 on metabolic phenotype, but it is likely that the
low number of subjects carrying this allele is the major
contributing factor.
Participants in this study were racially diverse (table 1). We

separately examined the relationships between 4bHC or
6bHCL MRs and MDZ oral clearance in the largest subgroup
consisting of Caucasians (n = 29) and found a similar lack of
correlations as we report in the analysis of the entire cohort.
Furthermore, in examining only the Caucasian subgroup,
similar relationships were found between demographic and

genetic factors for each of the CYP3A activity measures after
univariate and multivariable regression analyses. Therefore,
the overall study findings did not differ after racial diversity
factors were taken into consideration.
The relatively low interindividual range in basal CYP3A

activity of the current subject cohort likely limited stronger
correlations between the biomarkers and MDZ oral clearance.
A 6.5-fold range in MDZ oral clearance was observed. In a
previous study with a larger cohort of healthy participants, a
29-fold range in weight-normalized MDZ oral clearance was
found [23]. Beyond constitutive CYP3A activity and espe-
cially towards the extremes of metabolism caused by potent
enzyme induction and inhibition by drugs, both plasma 4bHC
MR and urinary 6bHCL MR are functional metabolic metrics.
However, their dynamic ranges are limited over the entire
CYP3A activity spectrum, with 4bHC plasma level and uri-
nary 6bHCL MR ranging approximately 20-fold [27,67,68]
and 22-fold [28], respectively. This compares with 400-fold
dynamic range seen with MDZ oral exposure [11]. Conse-
quently, significantly larger sample sizes would be required to
observe stronger correlations between biomarkers and MDZ
metabolic phenotype when CYP3A variation is narrow [67].
From a practical perspective, the smaller dynamic range of the
biomarkers has implications for their application in predicting
therapeutic doses of CYP3A substrate drugs in patients who
are not prescribed potent enzyme inducers or inhibitors.
In conclusion, given the observed lack of association of

plasma 4bHC and 6bHCL MRs with single-time-point pheno-
typing with oral MDZ, the utility of these endogenous
biomarkers for the assessment of constitutive CYP3A activity
appears limited.
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