66 research outputs found

    Comparison of two maxillary protraction protocols: tooth-borne versus bone-anchored protraction facemask treatment

    Get PDF
    Background Protraction facemask has been advocated for treatment of class III malocclusion with maxillary deficiency. Studies using tooth-borne rapid palatal expansion (RPE) appliance as anchorage have experienced side effects such as forward movement of the maxillary molars, excessive proclination of the maxillary incisors, and an increase in lower face height. A new Hybrid Hyrax bone-anchored RPE appliance claimed to minimize the side effects of maxillary expansion and protraction. A retrospective study was conducted to compare the skeletal and dentoalveolar changes in patients treated with these two protocols. Methods Twenty class III patients (8 males, 12 females, mean age 9.8 ± 1.6 years) who were treated consecutively with the tooth-borne maxillary RPE and protraction device were compared with 20 class III patients (8 males, 12 females, mean age 9.6 ± 1.2 years) who were treated consecutively with the bone-anchored maxillary RPE and protraction appliances. Lateral cephalograms were taken at the start of treatment and at the end of maxillary protraction. A control group of class III patients with no treatment was included to subtract changes due to growth to obtain the true appliance effect. A custom cephalometric analysis based on measurements described by Bjork and Pancherz, McNamara, Tweed, and Steiner analyses was used to determine skeletal and dental changes. Data were analyzed using a one-way analysis of variance. Results Significant differences between the two groups were found in 8 out of 29 cephalometric variables (p \u3c .05). Subjects in the tooth-borne facemask group had more proclination of maxillary incisors (OLp-Is, Is-SNL), increase in overjet correction, and correction in molar relationship. Subjects in the bone-anchored facemask group had less downward movement of the “A” point, less opening of the mandibular plane (SNL-ML and FH-ML), and more vertical eruption of the maxillary incisors. Conclusions The Hybrid Hyrax bone-anchored RPE appliance minimized the side effect encounter by tooth-borne RPE appliance for maxillary expansion and protraction and may serve as an alternative treatment appliance for correcting class III patients with a hyperdivergent growth pattern

    Topographic Targeting and Pathfinding Errors of Retinal Axons Following Overexpression of EphrinA Ligands on Retinal Ganglion Cell Axons

    Get PDF
    AbstractIn the retinotectal projection, the Eph receptor tyrosine kinase ligands ephrinA2 and ephrinA5 are differentially expressed not only in the tectum, but also in a high-nasal-to-low-temporal pattern in the retina. Recently, we have shown that retrovirally driven overexpression of ephrinA2 on retinal axons leads to topographic targeting errors of temporal axons in that they overshoot their normal termination zones in the rostral tectum and project onto the mid- and caudal tectum. The behavior of nasal axons, however, was only marginally affected. Here, we show that overexpression of ephrinA5 affects the topographic targeting behavior of both temporal and nasal axons. These data reinforce the idea that differential ligand expression on retinal axons contributes to topographic targeting in the retinotectal projection. Additionally, we found that ectopic expression of ephrinA2 and ephrinA5 frequently leads to pathfinding errors at the chiasm, resulting in an increased stable ipsilateral projection

    The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI

    Full text link
    The GRAVITY instrument has been revolutionary for near-infrared interferometry by pushing sensitivity and precision to previously unknown limits. With the upgrade of GRAVITY and the Very Large Telescope Interferometer (VLTI) in GRAVITY+, these limits will be pushed even further, with vastly improved sky coverage, as well as faint-science and high-contrast capabilities. This upgrade includes the implementation of wide-field off-axis fringe-tracking, new adaptive optics systems on all Unit Telescopes, and laser guide stars in an upgraded facility. GRAVITY+ will open up the sky to the measurement of black hole masses across cosmic time in hundreds of active galactic nuclei, use the faint stars in the Galactic centre to probe General Relativity, and enable the characterisation of dozens of young exoplanets to study their formation, bearing the promise of another scientific revolution to come at the VLTI.Comment: Published in the ESO Messenge

    Friction behavior of the wire material Gummetal®

    No full text
    Objectives!#!Gummetal® (Maruemu Works, Osaka, Japan), a new orthodontic wire material successfully used in clinical applications since 2006, is biocompatible and exhibits exceptionally high elasticity, nonlinear elastic behavior, plasticity and strength. Systematic comparisons of friction behavior are lacking; thus, the friction of Gummetal® in the binding modus was compared to commonly used low friction wires.!##!Materials and methods!#!In vivo tests were run with Gummetal®, CoCr (cobalt-chromium Elgiloy®, Rocky Mountain Orthodontics, Denver, CO, USA), β‑Ti (β-Titanium TMA®, Ormco, Orange, CA, USA), NiTi (nickel-titanium, NiTi-SE, Dentalline, Birkenfeld, Germany), and stainless steel (SS; Ref. 251-925, 3M Unitek, Monrovia, CA, USA) [dimensions: 0.014 inch (0.35 mm), 0.016 inch (0.40 mm), 0.016 × 0.022 inch (0.40 × 0.56 mm), and 0.019 × 0.025 inch (0.48 × 0.64 mm)-β-Ti not available in the dimension 0.014 inch]. These were combined with Discovery® (Dentaurum, Ispringen, Germany), Micro Sprint® (Forestadent, Pforzheim, Germany), Clarity™ (3M Unitek), and Inspire Ice™ (Ormco) and slots in the dimension 0.022 inch (0.56 mm) and, except for the 0.019 × 0.025 inch wires, in the dimension 0.018 inch (0.46 mm). They were ligated with a 0.010 inch (0.25 mm) steel ligature (Smile Dental, Ratingen, Germany). Brackets were angulated by applying a moment of force of 10 Nmm against the wire, which was pulled through the slot at 0.2 mm/s.!##!Results!#!In 660 tests using 132 bracket-wire combinations, friction loss for Gummetal® was comparable to and, in a few combinations with Micro Sprint®, significantly lower (p < 0.05) than SS and CoCr. The friction for Gummetal® was significantly lower (p < 0.05) than NiTi, and β‑Ti. In some bracket-wire combinations, lower friction was found with round wires compared to rectangular wires, except for the combination with Inspire Ice™, which was higher but not significant. Slot size did not have a significant effect on friction in most combinations.!##!Conclusion!#!The low friction associated with Gummetal® wires during arch-guided tooth movement will be a valuable addition to the armamentarium of orthodontists

    Application of the Digital Workflow in Orofacial Orthopedics and Orthodontics: Printed Appliances with Skeletal Anchorage

    No full text
    As digital workflows are gaining popularity, novel treatment options have also arisen in orthodontics. By using selective laser melting (SLM), highly customized 3D-printed appliances can be manufactured and combined with preformed components. When combined with temporary anchorage devices (TADs), the advantages of the two approaches can be merged, which might improve treatment efficacy, versatility, and patient comfort. This article summarizes state-of-the-art technologies and digital workflows to design and install 3D-printed skeletally anchored orthodontic appliances. The advantages and disadvantages of digital workflows are critically discussed, and examples for the clinical application of mini-implant and mini-plate borne appliances are demonstrated

    Application of the Digital Workflow in Orofacial Orthopedics and Orthodontics: Printed Appliances with Skeletal Anchorage

    No full text
    As digital workflows are gaining popularity, novel treatment options have also arisen in orthodontics. By using selective laser melting (SLM), highly customized 3D-printed appliances can be manufactured and combined with preformed components. When combined with temporary anchorage devices (TADs), the advantages of the two approaches can be merged, which might improve treatment efficacy, versatility, and patient comfort. This article summarizes state-of-the-art technologies and digital workflows to design and install 3D-printed skeletally anchored orthodontic appliances. The advantages and disadvantages of digital workflows are critically discussed, and examples for the clinical application of mini-implant and mini-plate borne appliances are demonstrated
    • …
    corecore