9 research outputs found

    Extending Bauer's corollary to fractional derivatives

    Full text link
    We comment on the method of Dreisigmeyer and Young [D. W. Dreisigmeyer and P. M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model nonconservative systems with fractional derivatives. It was previously hoped that using fractional derivatives in an action would allow us to derive a single retarded equation of motion using a variational principle. It is proven that, under certain reasonable assumptions, the method of Dreisigmeyer and Young fails.Comment: Accepted Journal of Physics A at www.iop.org/EJ/journal/JPhys

    Variational Problems with Fractional Derivatives: Euler-Lagrange Equations

    Full text link
    We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense

    A direct approach to the construction of standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients

    Full text link
    We present a direct approach to the construction of Lagrangians for a large class of one-dimensional dynamical systems with a simple dependence (monomial or polynomial) on the velocity. We rederive and generalize some recent results and find Lagrangian formulations which seem to be new. Some of the considered systems (e.g., motions with the friction proportional to the velocity and to the square of the velocity) admit infinite families of different Lagrangian formulations.Comment: 17 page

    Generalized Hamilton's Principle with Fractional Derivatives

    Get PDF
    We generalize Hamilton's principle with fractional derivatives in Lagrangian L(t,y(t),{}_0D_t^\al y(t),\alpha) so that the function yy and the order of fractional derivative α\alpha are varied in the minimization procedure. We derive stationarity conditions and discuss them through several examples

    Geometry and field theory in multi-fractional spacetime

    Full text link
    We construct a theory of fields living on continuous geometries with fractional Hausdorff and spectral dimensions, focussing on a flat background analogous to Minkowski spacetime. After reviewing the properties of fractional spaces with fixed dimension, presented in a companion paper, we generalize to a multi-fractional scenario inspired by multi-fractal geometry, where the dimension changes with the scale. This is related to the renormalization group properties of fractional field theories, illustrated by the example of a scalar field. Depending on the symmetries of the Lagrangian, one can define two models. In one of them, the effective dimension flows from 2 in the ultraviolet (UV) and geometry constrains the infrared limit to be four-dimensional. At the UV critical value, the model is rendered power-counting renormalizable. However, this is not the most fundamental regime. Compelling arguments of fractal geometry require an extension of the fractional action measure to complex order. In doing so, we obtain a hierarchy of scales characterizing different geometric regimes. At very small scales, discrete symmetries emerge and the notion of a continuous spacetime begins to blur, until one reaches a fundamental scale and an ultra-microscopic fractal structure. This fine hierarchy of geometries has implications for non-commutative theories and discrete quantum gravity. In the latter case, the present model can be viewed as a top-down realization of a quantum-discrete to classical-continuum transition.Comment: 1+82 pages, 1 figure, 2 tables. v2-3: discussions clarified and improved (especially section 4.5), typos corrected, references added; v4: further typos correcte
    corecore