19 research outputs found

    Identification of surface proteins in Enterococcus faecalis V583

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surface proteins are a key to a deeper understanding of the behaviour of Gram-positive bacteria interacting with the human gastro-intestinal tract. Such proteins contribute to cell wall synthesis and maintenance and are important for interactions between the bacterial cell and the human host. Since they are exposed and may play roles in pathogenicity, surface proteins are interesting targets for drug design.</p> <p>Results</p> <p>Using methods based on proteolytic "shaving" of bacterial cells and subsequent mass spectrometry-based protein identification, we have identified surface-located proteins in <it>Enterococcus faecalis </it>V583. In total 69 unique proteins were identified, few of which have been identified and characterized previously. 33 of these proteins are predicted to be cytoplasmic, whereas the other 36 are predicted to have surface locations (31) or to be secreted (5). Lipid-anchored proteins were the most dominant among the identified surface proteins. The seemingly most abundant surface proteins included a membrane protein with a potentially shedded extracellular sulfatase domain that could act on the sulfate groups in mucin and a lipid-anchored fumarate reductase that could contribute to generation of reactive oxygen species.</p> <p>Conclusions</p> <p>The present proteome analysis gives an experimental impression of the protein landscape on the cell surface of the pathogenic bacterium <it>E. faecalis</it>. The 36 identified secreted (5) and surface (31) proteins included several proteins involved in cell wall synthesis, pheromone-regulated processes, and transport of solutes, as well as proteins with unknown function. These proteins stand out as interesting targets for further investigation of the interaction between <it>E. faecalis </it>and its environment.</p

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    No full text
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P = 3.6 x 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P = 4.7 x 10(-8)). The top IBC association for SBP was rs2012318 (P = 6.4 x 10(-6)) near SLC25A42 and for DBP was rs2523586 (P = 1.3 x 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n 5 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P = 0.009; TBX3-TBX5, P = 0.03; and CSK-ULK3, P = 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity
    corecore