29 research outputs found

    Numerical simulations of possible finite time singularities in the incompressible Euler equations: comparison of numerical methods

    Full text link
    The numerical simulation of the 3D incompressible Euler equation is analyzed with respect to different integration methods. The numerical schemes we considered include spectral methods with different strategies for dealiasing and two variants of finite difference methods. Based on this comparison, a Kida-Pelz like initial condition is integrated using adaptive mesh refinement and estimates on the necessary numerical resolution are given. This estimate is based on analyzing the scaling behavior similar to the procedure in critical phenomena and present simulations are put into perspective.Comment: Euler equations: 250 years o

    Optimization of carbon ion and proton treatment plans using the raster-scanning technique for patients with unresectable pancreatic cancer

    Get PDF
    Background: The aim of the thesis is to improve radiation plans of patients with locally advanced, unresectable pancreatic cancer by using carbon ion and proton beams. Patients and methods: Using the treatment planning system Syngo RT Planning (Siemens, Erlangen, Germany) a total of 50 treatment plans have been created for five patients with the dose schedule 15 × 3 Gy(RBE). With reference to the anatomy, five field configurations were considered to be relevant. The plans were analyzed with respect to dose distribution and individual anatomy, and compared using a customized index. Results: Within the index the three-field configurations yielded the best results, though with a high variety of score points (field setup 5, carbon ion: median 74 (range 48–101)). The maximum dose in the myelon is low (e.g. case 3, carbon ion: 21.5 Gy(RBE)). A single posterior field generally spares the organs at risk, but the maximum dose in the myelon is high (e.g. case 3, carbon ion: 32.9 Gy(RBE)). Two oblique posterior fields resulted in acceptable maximum doses in the myelon (e.g. case 3, carbon ion: 26.9 Gy(RBE)). The single-field configuration and the two oblique posterior fields had a small score dispersion (carbon ion: median 66 and 58 (range 62–72 and 40–69)). In cases with topographic proximity of the organs at risk to the target volume, the single-field configuration scored as well as the three-field configurations. Conclusion: In summary, the three-field configurations showed the best dose distributions. A single posterior field seems to be robust and beneficial in case of difficult topographical conditions and topographical proximity of organs at risk to the target volume. A setup with two oblique posterior fields is a reasonable compromise between three-field and single-field configurations

    Associations between normal organs and tumor burden in patients imaged with fibroblast activation protein inhibitor-directed positron emission tomography

    Get PDF
    Several radiolabeled fibroblast activation protein targeted inhibitors (FAPI) have been developed for molecular imaging and therapy. A potential correlation of radiotracer uptake in normal organs and extent of tumor burden may have consequences for a theranostic approach using ligands structurally associated with [68Ga]Ga-FAPI, as one may anticipate decreased doses to normal organs in patients with extensive tumor load. In the present proof-of-concept study investigating patients with solid tumors, we aimed to quantitatively determine the normal organ biodistribution of [68Ga]Ga-FAPI-04, depending on the extent of tumor. Except for a trend towards significance in the myocardium, we did not observe any relevant associations between PET-based tumor burden and normal organs. Those preliminary findings may trigger future studies to determine possible implications for theranostic approaches and FAP-directed drugs, as one may expect an unchanged dose for normal organs even in patients with higher tumor load. Abstract (1) Background: We aimed to quantitatively investigate [68Ga]Ga-FAPI-04 uptake in normal organs and to assess a relationship with the extent of FAPI-avid tumor burden. (2) Methods: In this single-center retrospective analysis, thirty-four patients with solid cancers underwent a total of 40 [68Ga]Ga-FAPI-04 PET/CT scans. Mean standardized uptake values (SUVmean) for normal organs were established by placing volumes of interest (VOIs) in the heart, liver, spleen, pancreas, kidneys, and bone marrow. Total tumor burden was determined by manual segmentation of tumor lesions with increased uptake. For tumor burden, quantitative assessment included maximum SUV (SUVmax), tumor volume (TV), and fractional tumor activity (FTA = TV × SUVmean). Associations between uptake in normal organs and tumor burden were investigated by applying Spearman’s rank correlation coefficient. (3) Results: Median SUVmean values were 2.15 in the pancreas (range, 1.05–9.91), 1.42 in the right (range, 0.57–3.06) and 1.41 in the left kidney (range, 0.73–2.97), 1.2 in the heart (range, 0.46–2.59), 0.86 in the spleen (range, 0.55–1.58), 0.65 in the liver (range, 0.31–2.11), and 0.57 in the bone marrow (range, 0.26–0.94). We observed a trend towards significance for uptake in the myocardium and tumor-derived SUVmax (ρ = 0.29, p = 0.07) and TV (ρ = −0.30, p = 0.06). No significant correlation was achieved for any of the other organs: SUVmax (ρ ≤ 0.1, p ≥ 0.42), TV (ρ ≤ 0.11, p ≥ 0.43), and FTA (ρ ≤ 0.14, p ≥ 0.38). In a sub-analysis exclusively investigating patients with high tumor burden, significant correlations of myocardial uptake with tumor SUVmax (ρ = 0.44; p = 0.03) and tumor-derived FTA with liver uptake (ρ = 0.47; p = 0.02) were recorded. (4) Conclusions: In this proof-of-concept study, quantification of [68Ga]Ga-FAPI-04 PET showed no significant correlation between normal organs and tumor burden, except for a trend in the myocardium. Those preliminary findings may trigger future studies to determine possible implications for treatment with radioactive FAP-targeted drugs, as higher tumor load or uptake may not lead to decreased doses in the majority of normal organs

    Impact of tumor burden on normal organ distribution in patients imaged with CXCR4-targeted [68Ga]Ga-PentixaFor PET/CT

    Get PDF
    BACKGROUND: CXCR4-directed positron emission tomography/computed tomography (PET/CT) has been used as a diagnostic tool in patients with solid tumors. We aimed to determine a potential correlation between tumor burden and radiotracer accumulation in normal organs. METHODS: Ninety patients with histologically proven solid cancers underwent CXCR4-targeted [(68)Ga]Ga-PentixaFor PET/CT. Volumes of interest (VOIs) were placed in normal organs (heart, liver, spleen, bone marrow, and kidneys) and tumor lesions. Mean standardized uptake values (SUV(mean)) for normal organs were determined. For CXCR4-positive tumor burden, maximum SUV (SUV(max)), tumor volume (TV), and fractional tumor activity (FTA, defined as SUV(mean) x TV), were calculated. We used a Spearman's rank correlation coefficient (ρ) to derive correlative indices between normal organ uptake and tumor burden. RESULTS: Median SUV(mean) in unaffected organs was 5.2 for the spleen (range, 2.44 – 10.55), 3.27 for the kidneys (range, 1.52 – 17.4), followed by bone marrow (1.76, range, 0.84 – 3.98), heart (1.66, range, 0.88 – 2.89), and liver (1.28, range, 0.73 – 2.45). No significant correlation between SUV(max) in tumor lesions (ρ ≤ 0.189, P ≥ 0.07), TV (ρ ≥ -0.204, P ≥ 0.06) or FTA (ρ ≥ -0.142, P ≥ 0.18) with the investigated organs was found. CONCLUSIONS: In patients with solid tumors imaged with [(68)Ga]Ga-PentixaFor PET/CT, no relevant tumor sink effect was noted. This observation may be of relevance for therapies with radioactive and non-radioactive CXCR4-directed drugs, as with increasing tumor burden, the dose to normal organs may remain unchanged

    Radiomics for liver tumours

    No full text
    Current research, especially in oncology, increasingly focuses on the integration of quantitative, multiparametric and functional imaging data. In this fast-growing field of research, radiomics may allow for a more sophisticated analysis of imaging data, far beyond the qualitative evaluation of visible tissue changes. Through use of quantitative imaging data, more tailored and tumour-specific diagnostic work-up and individualized treatment concepts may be applied for oncologic patients in the future. This is of special importance in cross-sectional disciplines such as radiology and radiation oncology, with already high and still further increasing use of imaging data in daily clinical practice. Liver targets are generally treated with stereotactic body radiotherapy (SBRT), allowing for local dose escalation while preserving surrounding normal tissue. With the introduction of online target surveillance with implanted markers, 3D-ultrasound on conventional linacs and hybrid magnetic resonance imaging (MRI)-linear accelerators, individualized adaptive radiotherapy is heading towards realization. The use of big data such as radiomics and the integration of artificial intelligence techniques have the potential to further improve image-based treatment planning and structured follow-up, with outcome/toxicity prediction and immediate detection of (oligo)progression. The scope of current research in this innovative field is to identify and critically discuss possible application forms of radiomics, which is why this review tries to summarize current knowledge about interdisciplinary integration of radiomics in oncologic patients, with a focus on investigations of radiotherapy in patients with liver cancer or oligometastases including multiparametric, quantitative data into (radio)-oncologic workflow from disease diagnosis, treatment planning, delivery and patient follow-up

    Evaluation of the tumor movement and the reproducibility of two different immobilization setups for image-guided stereotactic body radiotherapy of liver tumors

    No full text
    Abstract Background The purpose of this study is to evaluate the tumor movement and accuracy of patient immobilization in stereotactic body radiotherapy of liver tumors with low pressure foil or abdominal compression. Methods Fifty-four liver tumors treated with stereotactic body radiotherapy were included in this study. Forty patients were immobilized by a vacuum couch with low pressure foil, 14 patients by abdominal compression. We evaluated the ratio of gross tumor volume/internal target volume, the tumor movement in 4D-computed tomography scans and daily online adjustments after cone beam computed tomography scans. Results The ratio of gross tumor volume/internal target volume was smaller with low pressure foil. The tumor movement in 4D-computed tomography scans was smaller with abdominal compression, the cranial movement even significantly different (p = 0.02). The mean online adjustments and their mean absolute values in the vertical, lateral and longitudinal axis were smaller with abdominal compression. The online adjustments were significantly different (p < 0.013), their absolute values in case of the longitudinal axis (p = 0.043). There was no significant difference of the adjustments’ 3D vectors. Conclusions In comparison to low pressure foil, abdominal compression leads to a reduction of the tumor movement. Online adjustments decreased significantly, thus leading to higher accuracy in patient positioning

    Optimization of Carbon Ion Treatment Plans by Integrating Tissue Specific α/β-Values for Patients with Non-Resectable Pancreatic Cancer.

    No full text
    The aim of the thesis is to improve treatment plans of carbon ion irradiation by integrating the tissues' specific [Formula: see text]-values for patients with locally advanced pancreatic cancer (LAPC).Five patients with LAPC were included in this study. By the use of the treatment planning system Syngo RT Planning (Siemens, Erlangen, Germany) treatment plans with carbon ion beams have been created. Dose calculation was based on [Formula: see text]-values for both organs at risk (OAR) and the tumor. Twenty-five treatment plans and thirty-five forward calculations were created. With reference to the anatomy five field configurations were included. Single Beam Optimization (SBO) and Intensity Modulated Particle Therapy (IMPT) were used for optimization. The plans were analyzed with respect to both dose distributions and individual anatomy. The plans were evaluated using a customized index.With regard to the target, a field setup with one single posterior field achieves the highest score in our index. Field setups made up of three fields achieve good results in OAR sparing. Nevertheless, the field setup with one field is superior in complex topographic conditions. But, allocating an [Formula: see text]-value of 2 Gy to the spinal cord leads to critical high maximum doses in the spinal cord. The evaluation of dose profiles showed significant dose peaks at borders of the [Formula: see text]-gradient, especially in case of a single posterior field.Optimization with specific [Formula: see text]-values allows a more accurate view on dose distribution than previously. A field setup with one single posterior field achieves good results in case of difficult topographic conditions, but leads to high maximum doses to the spinal cord. So, field setups with multiple fields seem to be more adequate in case of LAPC, being surrounded by highly radiosensitive normal tissues
    corecore